Toward Automatic Test Synthesis for
Performance Portable Programs

Keita Teranishi*, Shyamali Mukherjee*, Richard RutledgeT, Samuel D. Pollard*, Nicolas Morales*,
Noah Evans*, Alessandro Orsof, and Vivek Sarkar'
*Sandia National Laboratories, CA, USA TGeorgia Institute of Technology, GA, USA
Email: {knteran,smukher,spolla,nmmoral,nevans} @sandia.gov, {rrutledge,orso,vsarkar} @ gatech.edu

1. MOTIVATION

The unprecedented increase in parallelism and the corre-
sponding complexity of HPC systems imposes a formidable
burden on application developers and users to verify that
their code meets the performance, correctness, and reliability
requirements for conducting scientifically-relevant simulations
and analyses. Large-scale DOE applications, for instance,
execute on different vendor platforms containing thousands
of nodes with heterogeneous accelerators and must exploit
multiple levels of parallelism for high performance. The
combination of platform diversity, extreme heterogeneity, and
massive scales of parallelism vastly increases the set of pos-
sible dynamic behaviors of HPC applications, thereby making
testing and verification extremely challenging.

Kokkos: :Viewsdouble **> A(N,N); // Allocated in the default device
for(int i = 0; i < N; ++H) {

Kokkos: :parallel_for (N, KOKKOS_LAMBDA (const size_t &3)

Kokkos, CPUS

A(i,J) = i*N*j;
}

Kokkos: :View<double **> A(N,N); // Allocated in the default device
Kokkos: :View<double **>::HostMirror HostA = Kokkos::create_mirror(A);
for(int i = 0; i < N; ++i) {

Kokkos: :parallel_for (N, KOKKOS_LAMBDA(const size_t &j)

Portable Kokkos,
Heterogeneous

A(d,j) = i*Nvj;

Kokkos::fence();

Kokkos: ideep_copy (HostA, A); // Data copied from the accelerator to the host

Kokkos: :View<double **> A(N,N); // Allocated in the default device
Kokkos: :View<double **>::HostMirror HostA = Kokkos::create_mirror(A);
Policy team = Kokkos::team policy(DefaultExecutionSpace,N);
Kokkos: :parallel for (myTeamm, KOKKOS_LAMBDA (Policy::member_ type team)
{
int i = team.league_rank;
Kokkos: :parallel_for (Kokks::TeamThreadRange (team, N), [=] (const int &j)

Portable Kokkos ,
Heterogeneous, Efficient

A(,]) = isnrj;

Kokkos: 1 fence () ;
Kokkos: :deep_copy (HostA, A); // No data copy if A is on HostSpace

Fig. 1. Incremental Addition to Kokkos Code Source toward portable and
heterogeneous computing.

To address this increasing complexity of HPC applica-
tion development, performance portable programming models,
such as Kokkos [1]] and Raja [2], provide common platform-
independent abstractions for data representation and parallel
loops. By doing so, these models shield the users from address-
ing the details of the underlying node architecture, while still
achieving performance comparable to those of applications
implemented using platform-specific languages or frameworks.
Ideally, the users gain a significant productivity improvement
in their application development from only maintaining one

program source to support multiple architectures. However,
designing test cases and applications for these programming
frameworks is still a tedious manual process because their ap-
plication programming interface (API) specifications and their
behaviors require a detailed understanding of the architecture
on which the application is to be deployed.

For example, only a few basic Kokkos APIs are needed to
parallelize computations on CPU platforms. For convenience,
many applications are typically developed on traditional CPU-
based architectures at their initial stage. Adapting the initial
implementation to heterogeneous systems for improved perfor-
mance portability involves incremental additions of advanced
API calls, as illustrated in Figure E} A side effect of this
approach is that writing robust portable test cases for applica-
tions that use these more advanced APIs becomes even more
daunting than before, leading to either poor test coverage or
Herculean developer efforts. Furthermore, many application
developers and domain scientists may have limited experience
with respect to modern software engineering practices in C++.
As a result, their codes may exhibit subtle bugs related to the
use of these advanced APIs, thereby further motivating the
need for automatic test generation.

Typically, only a small fraction of the source code of Kokkos
applications contains calls to Kokkos APIs, but the templated
nature of C++ hides the true complexity of Kokkos behavior
in scientific applications. As a performance portability layer,
Kokkos adapts and extends program behavior to current and
future runtimes by specializing the behavior of a scientific
program to use a desired set of concrete parallel runtime APIs
for a given platform. However, widespread use of template
instantiation makes it hard to separate the behavior of Kokkos
runtime instantiations from the underlying scientific applica-
tion. Thus, any attempt to apply automated static analysis and
traditional test generation techniques must explore the state
space and the behavior not just of the scientific application
but also of each instantiation of individual Kokkos runtime
behavior models. Consequently, any automated test framework
used to test these kinds of applications will typically require
runtime-specific test cases to test all behaviors of an applica-
tion on different platforms.

II. OUR APPROACH

Our framework, called KLOKKOS, will use KLEE [3], a
well-known automatic symbolic execution framework built on

Kokkos: :View<double *> A(10);
parallel_for(10, [=] (int i)

{
A(i) = input;
}s

View A = ViewDeclarelD(DOUBLE,10);

policy=ParallelForBeginRangePolicy(0,10);
int i = getIndex(policy);
KokkosAssignDouble(policy, A, i, input);

ParallelForEndRangePolicy(policy);

Fig. 2. An Example of Code Transformation through Clang AST. All modern
C++ features are converted to C-like functions to simplify the symbolic
analysis.

top of the LLVM compiler infrastructure, to address the afore-
mentioned challenges. To support the testing of applications
written for heterogeneous computing systems, we propose to
adapt KLEE to analyze HPC applications written in Kokkos. A
critical challenge in test generation is limiting the number, size,
and complexity of the generated tests, but Kokkos’ APIs and
abstraction exploit modern templated C++, which can generate
a large number of executable variants. To address this problem,
we leverage our own (1) Kokkos formal specifications and (2)
compiler (Clang-AST) source code transformation to simplify
the way in which Kokkos operations are processed by our
toolchain. Our Kokkos specification provides a rigorous formal
semantics that makes it possible for domain scientists and
application developers to separate the testing of scientific ap-
plications from the testing of the behavior of specific runtimes.
Specifically, our source code transformation converts all
Kokkos operations into C-like function calls (see Figure [2),
allowing KLEE to capture and interpret such operations at a
higher level, that is, before they are lowered into low-level
LLVM IR operations. This separation of concerns can greatly
reduce the execution time and resources required for test gen-
eration, and make computationally expensive formal methods
practical by limiting state space exploration to the subset
relevant to a given scientific application. Invariants specifying
the behavior of the performance portability layer and property-
based testing will be used not only to generate tests but also
to identify bugs and potential sources of non-deterministic
behavior. As illustrated in Figure [3] our KLOKKOS frame-
work, a new test generation framework for HPC based on
dynamic symbolic execution, combines advances in compiler
technology and formal methods, aiming to generate test cases
using a combination of concrete and symbolic execution.

Fig. 3. The Klokkos testing framework. Our proposed work is indicated by
green boxes. The grey boxes are existing elements our framework leverages.

In the presentation, we will discuss the design of the
KLOKKOS framework and its current implementation status.
We will also illustrate our approach by showing how it can
address some common bugs in Kokkos programs, such as
data consistency with heterogeneous node architectures and
race conditions. Finally, we will discuss how our Kokkos
formal specification and specialized testing strategies (e.g.,
differential testing) will allow us to create a comprehensive
testing framework for performance portable programs.

ACKNOWLEDGEMENT

This material is based upon work supported by the U.S.
Department of Energy, Office of Science, Advanced Scien-
tific Computing Research, under Award Number DE-FOA-
0002460. Sandia National Laboratories is a multimission lab-
oratory managed and operated by National Technology and
Engineering Solutions of Sandia, LLC, a wholly owned sub-
sidiary of Honeywell International Inc., for the U.S. Depart-
ment of Energy’s National Nuclear Security Administration
under contract DE-NA0003525.

REFERENCES

[1] C.R. Trott, D. Lebrun-Grandie, D. Arndt, J. Ciesko, V. Dang, N. Elling-
wood, R. Gayatri, E. Harvey, D. S. Hollman, D. Ibanez et al., “Kokkos 3:
Programming model extensions for the exascale era,” IEEE Transactions
on Parallel and Distributed Systems, vol. 33, no. 4, pp. 805-817, 2021.

[2] R. Hornung and J. Keasler, “The RAJA portability layer: overview and
status,” Lawrence Livermore National Laboratory, Tech. Rep. LLNL-TR-
661403, 2014.

[3] C. Cadar, D. Dunbar, and D. Engler, “Klee: Unassisted and automatic
generation of high-coverage tests for complex systems programs,” in
Proceedings of the 8th USENIX Conference on Operating Systems Design
and Implementation, ser. OSDI’08. USA: USENIX Association, 2008,
p. 209-224.

	Motivation
	Our Approach
	References

