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Introduction to (Computer) Arithmetic

Computers can only approximate real numbers
The most common approximation is floating point
Floating point can introduce error

(source: [4])
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An Analogy
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Motivation

High-consequence systems require scalable, generalizable verification tools

Formal Methods (FM) provides mathematical, computer-checked proofs of
correctness
FM is time consuming
Goal: improve automation for FM

in particular, with floating point
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Specifying Software Using ACSL

ACSL = ANSI C Specification Language
A first-order logic about C programs
Frama-C transforms C + ACSL into
verification conditions that automated
reasoning tools can solve [3]

/*@ requires \valid(a)
&& \valid(b);

ensures *a == \old(*b)
&& *b == \old(*a);

assigns *a, *b;
*/
void swap(int *a, int *b) {

int temp = *a;
*a = *b;
*b = temp;
return;

}
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Specifying Software Using ACSL for Numerics

Recall: our goal is to improve automation for formal methods

We first tried to link floating-point automated reasoning tools [2, 5] with
Frama-C
But we quickly discovered…
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ACSL Isn’t Quite Expressive Enough

Propose 5 features
1. Roundoff error
2. uncertainty
3. real vs float model
4. Support ulp, relative error
5. Syntax simplifications

Require at least the first two:
1. allows error analysis
2. provides compositionality

The other three improve
usability

1. /*@
ensures \round_error(\result) <= 1e-8;

*/
double foo(double x);

2. /*@
requires x \in [-5.0, 5.0]
requires x \uncertainty(x,-1e-4,1e-4);

*/
double foo(double x);
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Outcomes

Draft document of ACSL extensions for
floating-point
Grow collaboration between Sandia, the French
Center for Atomic Energy (CEA-List), & NASA
This project and related work funded by NNSA
Advanced Simulation and Computing will be
published in The International Workshop on
Numerical and Symbolic Abstract Domains [1]

ANSI/ISO C Specification Language:

Floating-Point Draft Syntax
Version α

Samuel D. Pollard, Laura Titolo, Mariano Moscato, Maxime Jacquemin

Work licensed under Creative Commons BY licence
https://creativecommons.org/licenses/by/4.0/

© 2024-2024 CEA-List, Sandia National Laboratories, NASA
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More to Come

SAND report will have technical details (on OSTI)
Upcoming technical talk for Multi-institutional Community of Practice (MiCoP)
Software in the process of being open-sourced
Future work

Agree on ACSL features and scope implementation effort
Link automated reasoning tools with Frama-C

https://proof.sandia.gov
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