
Automated Error Analysis of Numerical Kernels for
High-Consequence Systems with Frama-C

DAHCS Late-Start LDRD 24-1299
Samuel D. Pollard (PI), Shant Hairapetian

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering
Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s

National Nuclear Security Administration under contract DE-NA0003525. SAND No. SAND2024-11689O



Introduction to (Computer) Arithmetic

Computers can only approximate real numbers
The most common approximation is floating point
Floating point can introduce error

(source: [4])

1km away

🚀 🔭

20,000km away

2



Introduction to (Computer) Arithmetic

Computers can only approximate real numbers
The most common approximation is floating point
Floating point can introduce error (source: [4])

1km away

🚀 🔭

20,000km away
2



An Analogy

3



Motivation

High-consequence systems require scalable, generalizable verification tools

Formal Methods (FM) provides mathematical, computer-checked proofs of
correctness
FM is time consuming
Goal: improve automation for FM

in particular, with floating point

4



Motivation

High-consequence systems require scalable, generalizable verification tools
Formal Methods (FM) provides mathematical, computer-checked proofs of
correctness

FM is time consuming
Goal: improve automation for FM

in particular, with floating point

4



Motivation

High-consequence systems require scalable, generalizable verification tools
Formal Methods (FM) provides mathematical, computer-checked proofs of
correctness
FM is time consuming

Goal: improve automation for FM
in particular, with floating point

4



Motivation

High-consequence systems require scalable, generalizable verification tools
Formal Methods (FM) provides mathematical, computer-checked proofs of
correctness
FM is time consuming
Goal: improve automation for FM

in particular, with floating point

4



Specifying Software Using ACSL

ACSL = ANSI C Specification Language
A first-order logic about C programs
Frama-C transforms C + ACSL into
verification conditions that automated
reasoning tools can solve [3]

/*@ requires \valid(a)
&& \valid(b);

ensures *a == \old(*b)
&& *b == \old(*a);

assigns *a, *b;
*/
void swap(int *a, int *b) {

int temp = *a;
*a = *b;
*b = temp;
return;

}

5



Specifying Software Using ACSL

ACSL = ANSI C Specification Language
A first-order logic about C programs
Frama-C transforms C + ACSL into
verification conditions that automated
reasoning tools can solve [3]

/*@ requires \valid(a)
&& \valid(b);

ensures *a == \old(*b)
&& *b == \old(*a);

assigns *a, *b;
*/
void swap(int *a, int *b) {

int temp = *a;
*a = *b;
*b = temp;
return;

}

5



Specifying Software Using ACSL for Numerics

Recall: our goal is to improve automation for formal methods

We first tried to link floating-point automated reasoning tools [2, 5] with
Frama-C
But we quickly discovered…

6



Specifying Software Using ACSL for Numerics

Recall: our goal is to improve automation for formal methods
We first tried to link floating-point automated reasoning tools [2, 5] with
Frama-C

But we quickly discovered…

6



Specifying Software Using ACSL for Numerics

Recall: our goal is to improve automation for formal methods
We first tried to link floating-point automated reasoning tools [2, 5] with
Frama-C
But we quickly discovered…

6



ACSL Isn’t Quite Expressive Enough

Propose 5 features
1. Roundoff error
2. uncertainty
3. real vs float model
4. Support ulp, relative error
5. Syntax simplifications

Require at least the first two:
1. allows error analysis
2. provides compositionality

The other three improve
usability

1. /*@
ensures \round_error(\result) <= 1e-8;

*/
double foo(double x);

2. /*@
requires x \in [-5.0, 5.0]
requires x \uncertainty(x,-1e-4,1e-4);

*/
double foo(double x);

7



ACSL Isn’t Quite Expressive Enough

Propose 5 features
1. Roundoff error
2. uncertainty
3. real vs float model
4. Support ulp, relative error
5. Syntax simplifications

Require at least the first two:
1. allows error analysis
2. provides compositionality

The other three improve
usability

1. /*@
ensures \round_error(\result) <= 1e-8;

*/
double foo(double x);

2. /*@
requires x \in [-5.0, 5.0]
requires x \uncertainty(x,-1e-4,1e-4);

*/
double foo(double x);

7



Outcomes

Draft document of ACSL extensions for
floating-point
Grow collaboration between Sandia, the French
Center for Atomic Energy (CEA-List), & NASA
This project and related work funded by NNSA
Advanced Simulation and Computing will be
published in The International Workshop on
Numerical and Symbolic Abstract Domains [1]

ANSI/ISO C Specification Language:

Floating-Point Draft Syntax
Version α

Samuel D. Pollard, Laura Titolo, Mariano Moscato, Maxime Jacquemin

Work licensed under Creative Commons BY licence
https://creativecommons.org/licenses/by/4.0/

© 2024-2024 CEA-List, Sandia National Laboratories, NASA

8



More to Come

SAND report will have technical details (on OSTI)
Upcoming technical talk for Multi-institutional Community of Practice (MiCoP)
Software in the process of being open-sourced
Future work

Agree on ACSL features and scope implementation effort
Link automated reasoning tools with Frama-C

https://proof.sandia.gov

9

https://proof.sandia.gov


References I

[1] Dario, A., and Pollard, S. D.
A step-function abstract domain for granular floating-point error analysis.
In 10th International Workshop on Numerical and Symbolic Abstract Domains (2024), NSAD.
To appear.

[2] Fernandes Ferreira, N. B., Moscato, M. M., Titolo, L., and Ayala-Rincón, M.
A provably correct floating-point implementation of well clear avionics concepts.
In Formal Methods in Computer-Aided Design (2023), FMCAD, pp. 237–246.

[3] Kosmatov, N., Prevosto, V., and Signoles, J., Eds.
Guide to Software Verification with Frama-C (2024), Springer Cham.

[4] Marchevsky, S.
Float point single precision error in graphics, 2018.
https://www.youtube.com/watch?v=wGhBjMcY2YQ.

[5] Solovyev, A., Jacobsen, C., Rakamarić, Z., and Gopalakrishnan, G.
Rigorous estimation of floating-point round-off errors with symbolic taylor expansions.
In LNCS (Oslo, Norway, 2015), N. Bjørner and F. de Boer, Eds., vol. 9109 of 20th International Symposium
on Formal Methods (FM), Springer, pp. 532–550.

10

https://www.youtube.com/watch?v=wGhBjMcY2YQ

