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Steps to (Compute a Graph Property Quickly) HPCLHPCL

1 Find a package
2 Nail down dependencies
3 Reformat graph input file
4 Learn how to use CLI/API
5 Run gamut of experiments
6 Measure performance of experiments
7 Combine, analyze, and decide
8 Link with existing workflow
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Parallel Graph Algorithms HPCLHPCL

I Social network analysis [1]
• Twitter has its own graph processing package (GraphJet)
• Google has its own language (Pregel)

I Bioinformatics [4]
• Tend to have more complex analysis of smaller datasets
• e.g. protein interaction networks
• non-e.g. Needleman-Wunsch algorithm for global sequence alignment
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Before Reproducibility. . . HPCLHPCL

I Ensure we’re actually
measuring the right
times!

I File read time was
mistakenly used as
performance
measurement

I Abridged log file from GraphMat
• finished file read. time: 2.65211
• load graph: 5.91229 sec
• initialize engine: 8.32081e-05 sec
• run algorithm 1 (count degree): 0.0555639 sec
• run algorithm 2 (compute PageRank): 0.149445 sec
• print output: 0.0641179 sec
• deinitialize engine: 0.00022006 sec
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File Formats HPCLHPCL

I Binary can be much faster (factor
of at least 3)
• No parsing, can just store into

array
• Less portable
• May be serialization of internal

data structures
I 0-indexed or 1-indexed?

• May not be interchangeable

this?

55555 44444
44444 22222
11111 66666

or this?

5 4
4 2
1 6

or this?

4 3
3 1
0 5
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Differing Results HPCLHPCL

I PageRank stopping criterion
• ||pt − pt−1||1
• ||pt − pt−1||∞
• Stop when no weights change (machine ε)

I Triangle counting
• Count both directions of triangle?
• One, two, or three triangles?

A

B C
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Starting (Root) Vertices HPCLHPCL

I Performance of BFS and SSSP
depends on where you start

I More reachable vertices

Root

A

B

C

D

vs.

Root

A

B C

D
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Early Results HPCLHPCL
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Early Results HPCLHPCL
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Be Careful with Speedup HPCLHPCL

I What if I naïvely wrote serial implementation?
I Graph500 has Serial, OpenMP, and MPI implementations
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Recommendation and Ranking HPCLHPCL

I Pick the best graph package for your hardware and graph
1 Compute features of a graph

This may be expensive

2 Train a model based on these features

I Apply work in linear solver recommendations [5] to graph processing packages

16 / 24



Intro Reproducibility Recommendation Future Work

Computing Features HPCLHPCL

I 12 features (the ones
computed on SNAP)

I e.g. # vertices, # edges,
diameter, clustering
coefficient

Figure: A scale free network has low diameter [3]
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Training Models HPCLHPCL
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Algorithm

I Worst
case: BFS
with factor
of 2

I Best case:
TC with
factor of
0.5
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Classification HPCLHPCL

Random Forest

TC

good bad
good 43 1
bad 0 118

BFS

good bad
good 110 0
bad 0 147

PR

good bad
good 75 0
bad 1 193

SSSP

good bad
good 51 11
bad 9 198

I Columns are predictions
I Rows are observations
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Parameter Tuning HPCLHPCL

I BFS - α and β (direction-optimizing). This is a combination of:
• bottom-up: unvisited nodes searching for visited parents
• top-down: visited nodes searching for unvisited children

I SSSP - ∆-stepping; order nodes using ranges of size ∆ to distribute work
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More More More! HPCLHPCL

I Experiments
• O(10,000)
• Probably some will fail
• Storage concerns

I Packages
• Difficult to learn different APIs, CLIs, and ensure consistent measurement
• Leaderboard (in the spirit of Graph500) could motivate package authors

I Algorithms
• Packages may not provide reference implementations
• Rolling our own may not be as efficient as expert users
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Containerization HPCLHPCL

I Singularity [2] an attractive, HPC-focused option
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Conclusion HPCLHPCL

I Automated performance collection of parallel graph processing implementations
• 6 packages
• 4 algorithms

I Ran experiments and generated models to predict performance for a given
(hardware, graph) pair

I Speedup over random selection ranges from 7% (PageRank) to 700% (BFS)
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