
A Performance and Recommendation System for Parallel Graph
Processing Implementations

Work-In-Progress, ICPE 2019

Samuel D. Pollard, Sudharhsan Srinivasan, Boyana Norris

Computer and Information Science
https://hpcl.cs.uoregon.edu

April 11, 2019

https://hpcl.cs.uoregon.edu

Intro Reproducibility Recommendation Future Work

HPCLHPCL

1 Introduction

2 Reproducibility

3 Recommendation

4 Future Work

2 / 24

Intro Reproducibility Recommendation Future Work

Steps to (Compute a Graph Property Quickly) HPCLHPCL

1 Find a package
2 Nail down dependencies
3 Reformat graph input file
4 Learn how to use CLI/API
5 Run gamut of experiments
6 Measure performance of experiments
7 Combine, analyze, and decide
8 Link with existing workflow

3 / 24

Intro Reproducibility Recommendation Future Work

Steps to Quickly (Compute a Graph Property Quickly) HPCLHPCL

1 Find a package
2 Nail down dependencies
3 Reformat graph input file
4 Learn how to use CLI/API
5 Run gamut of experiments
6 Measure performance of such experiments
7 Combine, analyze, and decide
8 Link with existing workflow

4 / 24

Intro Reproducibility Recommendation Future Work

Parallel Graph Algorithms HPCLHPCL

I Social network analysis [1]
• Twitter has its own graph processing package (GraphJet)
• Google has its own language (Pregel)

I Bioinformatics [4]
• Tend to have more complex analysis of smaller datasets
• e.g. protein interaction networks
• non-e.g. Needleman-Wunsch algorithm for global sequence alignment

5 / 24

Intro Reproducibility Recommendation Future Work

Workflow HPCLHPCL

6 / 24

Intro Reproducibility Recommendation Future Work

HPCLHPCL

1 Introduction

2 Reproducibility

3 Recommendation

4 Future Work

7 / 24

Intro Reproducibility Recommendation Future Work

Before Reproducibility. . . HPCLHPCL

I Ensure we’re actually
measuring the right
times!

I File read time was
mistakenly used as
performance
measurement

I Abridged log file from GraphMat
• finished file read. time: 2.65211
• load graph: 5.91229 sec
• initialize engine: 8.32081e-05 sec
• run algorithm 1 (count degree): 0.0555639 sec
• run algorithm 2 (compute PageRank): 0.149445 sec
• print output: 0.0641179 sec
• deinitialize engine: 0.00022006 sec

8 / 24

Intro Reproducibility Recommendation Future Work

File Formats HPCLHPCL

I Binary can be much faster (factor
of at least 3)
• No parsing, can just store into

array
• Less portable
• May be serialization of internal

data structures
I 0-indexed or 1-indexed?

• May not be interchangeable

this?

55555 44444
44444 22222
11111 66666

or this?

5 4
4 2
1 6

or this?

4 3
3 1
0 5

9 / 24

Intro Reproducibility Recommendation Future Work

Differing Results HPCLHPCL

I PageRank stopping criterion
• ||pt − pt−1||1
• ||pt − pt−1||∞
• Stop when no weights change (machine ε)

I Triangle counting
• Count both directions of triangle?
• One, two, or three triangles?

A

B C

10 / 24

Intro Reproducibility Recommendation Future Work

Starting (Root) Vertices HPCLHPCL

I Performance of BFS and SSSP
depends on where you start

I More reachable vertices

Root

A

B

C

D

vs.

Root

A

B C

D

11 / 24

Intro Reproducibility Recommendation Future Work

Early Results HPCLHPCL

I Data
structure
construc-
tion time
sometimes
not split ●

●

●

●

GAP GraphMat

1
.0

1
.5

2
.0

2
.5

3
.5

SSSP Data Structure

Construction

T
im

e
 (

s
e

c
o

n
d

s
)

●

●
●
●
●

●

●
●●

GAP GraphBIG GraphMat PowerGraph

0
.1

0
.2

0
.5

1
.0

2
.0

SSSP Time

T
im

e
 (

s
e

c
o

n
d

s
)

Scale = 22

12 / 24

Intro Reproducibility Recommendation Future Work

Early Results HPCLHPCL

●

●

●

●

●

●

● ●

1
2

5
1
0

2
0

BFS Speedup

Threads

S
p
e
e
d
u
p

1 2 4 8 16 32 64 72

Scale = 23

●

Linear

GraphBIG

Graph500

GraphMat

GAP

≈ 16 ∗ 223

≈ 135M
edges

13 / 24

Intro Reproducibility Recommendation Future Work

Be Careful with Speedup HPCLHPCL

I What if I naïvely wrote serial implementation?
I Graph500 has Serial, OpenMP, and MPI implementations

14 / 24

Intro Reproducibility Recommendation Future Work

HPCLHPCL

1 Introduction

2 Reproducibility

3 Recommendation

4 Future Work

15 / 24

Intro Reproducibility Recommendation Future Work

Recommendation and Ranking HPCLHPCL

I Pick the best graph package for your hardware and graph
1 Compute features of a graph

This may be expensive

2 Train a model based on these features

I Apply work in linear solver recommendations [5] to graph processing packages

16 / 24

Intro Reproducibility Recommendation Future Work

Computing Features HPCLHPCL

I 12 features (the ones
computed on SNAP)

I e.g. # vertices, # edges,
diameter, clustering
coefficient

Figure: A scale free network has low diameter [3]

17 / 24

Intro Reproducibility Recommendation Future Work

Training Models HPCLHPCL

0.0

0.1

0.2

0.3

BFS PR
SSSP TC

R
2

Method

None

Norm

R+N

Ridge

0

20

40

BFS PR
SSSP TC

R
M

S
D

Method

None

Norm

R+N

Ridge

0

1

2

3

BFS PR
SSSP TC

N
R

M
S

D

Method

None

Norm

R+N

Ridge

Linear Regression Results

Algorithm

I Worst
case: BFS
with factor
of 2

I Best case:
TC with
factor of
0.5

18 / 24

Intro Reproducibility Recommendation Future Work

Classification HPCLHPCL

Random Forest

TC

good bad
good 43 1
bad 0 118

BFS

good bad
good 110 0
bad 0 147

PR

good bad
good 75 0
bad 1 193

SSSP

good bad
good 51 11
bad 9 198

I Columns are predictions
I Rows are observations

19 / 24

Intro Reproducibility Recommendation Future Work

HPCLHPCL

1 Introduction

2 Reproducibility

3 Recommendation

4 Future Work

20 / 24

Intro Reproducibility Recommendation Future Work

Parameter Tuning HPCLHPCL

I BFS - α and β (direction-optimizing). This is a combination of:
• bottom-up: unvisited nodes searching for visited parents
• top-down: visited nodes searching for unvisited children

I SSSP - ∆-stepping; order nodes using ranges of size ∆ to distribute work

21 / 24

Intro Reproducibility Recommendation Future Work

More More More! HPCLHPCL

I Experiments
• O(10,000)
• Probably some will fail
• Storage concerns

I Packages
• Difficult to learn different APIs, CLIs, and ensure consistent measurement
• Leaderboard (in the spirit of Graph500) could motivate package authors

I Algorithms
• Packages may not provide reference implementations
• Rolling our own may not be as efficient as expert users

22 / 24

Intro Reproducibility Recommendation Future Work

Containerization HPCLHPCL

I Singularity [2] an attractive, HPC-focused option

23 / 24

Intro Reproducibility Recommendation Future Work

Conclusion HPCLHPCL

I Automated performance collection of parallel graph processing implementations
• 6 packages
• 4 algorithms

I Ran experiments and generated models to predict performance for a given
(hardware, graph) pair

I Speedup over random selection ranges from 7% (PageRank) to 700% (BFS)

24 / 24

References I HPCLHPCL

[1] Kang, U., Meeder, B., and Faloutsos, C.
Spectral analysis for billion-scale graphs: Discoveries and implementation.
In Advances in Knowledge Discovery and Data Mining (Berlin, 2011), vol. 6635 of Lecture Notes in
Computer Science, Springer.

[2] Kurtzer, G. M., Sochat, V., and Bauer, M. W.
Singularity: Scientific containers for mobility of compute.
PLOS ONE 12, 5 (May 2017), 1–20.

[3] Lamberson, P. J.
Scale-free network.
Available at http://social-dynamics.org/scale-free-network/.

[4] Pavlopoulos, G. A., Secrier, M., Moschopoulos, C. N., Soldatos, T. G., Kossida, S., Aerts, J., Schneider, R.,
and Bagos, P. G.
Using graph theory to analyze biological networks.
In BioData Mining (Bethesda, MD, 2011), PubMed Central.

1 / 2

http://social-dynamics.org/scale-free-network/

References II HPCLHPCL

[5] Sood, K., Norris, B., and Jessup, E.
Comparative performance modeling of parallel preconditioned krylov methods.
In IEEE 19th International Conference on High Performance Computing and Communications; 15th
International Conference on Smart City; 3rd International Conference on Data Science and Systems (Dec.
2017), HPCC/SmartCity/DSS, pp. 26–33.

2 / 2

	Introduction
	Reproducibility
	Recommendation
	Future Work
	Appendix

