Sandia
Exceptional service in the national interest @ National

Laboratories

Formal and Semi-Formal Verification of Floating-Point
Computations in C Programs

Samuel D. Pollard, Sandia National Labs, Livermore, California

FP Bench Community Meeting, 6 April 2023

Sandia Natonal Laboratores s & mulimission aboratory managed and operated by Natonal Technology & Enginesring
Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell Inc., for the U.S. D g
National Nuclear Security Administration under contract DE-| NA0003525. SAND No. SANDZDZS 01442 E

Introduction

m Sandia National Labs is a US government research & development center
m Sandia does many things, for example
m we develop high-consequence embedded control systems
m also a large consumer of HPC for modeling and simulation
m The former is good use case for formal methods
m For example:

m Kalman Filter
m Problem size ~ 20 x 20 matrices
m Implemented in C with minimal dependencies

Methodology, or, What Does “Formal” Mean Anyway?

m When costs for failure are catastrophic, testing
is insufficient

So now what? Methods like
m Uncertainty Quantification (statistical)
m Modeling and Simulation (physics-based)
m Model-Based Systems Engineering (state
machines)

m Formal Methods

m Have: English specifications, developers’
brains, source code

m Goal: make a perfect model of a digital system

m Tools: In my opinion, the biggest barrier to
FM adoption

’ Geoff Langdale
@geofflangdale

Formal methods folks: suppose someone
was doing low-level coding tooling (i.e.
assembly level). If one wanted to verify
properties of short sequences (I guess
putting in pre-/post-conditions and

getting yes/no/don't know) what are the
mainstream systems for doing that in 2023?
6:49 PM - 23 Mar 23 - 14.8K Views

9 Retweets 1 Quote 42 Likes

Challenges with Proving Code Correct m

In general it's undecidable. But to
be more specific ...
1. Formal Models of Hardware
m ISAs are usually a good
abstraction to “stop” at
m Sometimes require
axiomatization of hardware
(e.g. memory-mapped |/0)
m Subtle differences between
architectures

2. Tooling
m How strong of assurance do
you want?

Holy Grail

Static Analyzers
°

Model Checkers
°

Automation

Deductive Program Provers
)

Domain-Specific Provers
°

Property-Based Testi
o roperty-based flesting o, | ¢ Assistants

Strength of Claims

Adapted from Leroy [5]

Models of Hardware

m Even CompCert gets it wrong sometimes’

m Our early analysis found an issue with NaN propagation for RISC-V

// This signaling nan should not be propagated because

// FCVT.S.D or FCVT.D.S (type casting) is _not_ one of the

// operations which preserves NaN payload

float x = single_of_bits(0xFF800009) ;

printf ("FCVT.D.S snan(-9) = 0x%01611X = 0x7FF8000000000000\n",
bits_of_double((double) x));

$ ccomp -interp -quiet nan.c
FCVT.D.S snan(-9) = 0xFFF8000120000000 = 0x7FF8000000000000
observed correct -

1httBs://Eithub.com/AbsInt/ComBCert/issues/428

https://github.com/AbsInt/CompCert/issues/428

Risc-V Standard m

Except when otherwise stated, if the result of a floating-point operation is NaN, it is the canonical
NaN. The canonical NaN has a positive sign and all significand bits clear except the MSB, a.k.a.
the quiet bit. For single-precision floating-point, this corresponds to the pattern 0x7£c00000.

We considered propagating NaN payloads, as is recommended by the standard, but this decision
would have increased hardware cost. Moreover, since this feature is optional in the standard, it

cannot be used in portable code.
Implementors are free to provide a NaN payload propagation scheme as a nonstandard exten-

sion enabled by a nonstandard operating mode. However, the canonical NaN scheme described
above must always be supported and should be the default mode.

RISC-V Manual 2019, Sec 11.3
Might be a good intern project to search for more discrepancies

Application: Kalman Filter

m Start with a
simplified case:
measuring the
weight of a bar
of gold with a
noisy scale

m Kalman filter
assumes noise
normally
distributed

1020

1010

1000

Weight (g)

g

=—&— Measurements
—o— Estimates
=—4— True values

;\y | | | | \7/
: ps

I3
Iterations

First Steps towards a Formally-Verified Kalman Filter m

Three values to update

m K Kalman gain,
€ [0, 1]; how much
to prefer new
measurements to
best guess

m curr current
estimation

m p_var monotonically
nonincreasing

int main() {
double input, K;
double curr = 990.0; // Initial guess
double p_var = 100.0; // Estimation wvariance 102
double r_var = 225.0; // Measurement variance 152
while(scanf ("%1f", &input) != EOF) {
K = update_gain(p_var, r_var);
curr = update_state(K, curr, input);
p_var = update_p(K, p_var);
}
return O;

}

Writing the Spec with VST

m Write the functional spec in
Coq

m Challenge: VST does not
support printf, scanf
because of varargs

Definition update_p (K p : float) : float :=
((Float.of_int (Int.repr 1) — K) * p)%F64.

Definition update_state (K x m : float) : float

(x + K * (m — x))%F64.
Definition update_gain (p r : float) : float
(p/ (p + 1)) %F64.
(* Other specs with the main function *)
Definition Gprog := |
update_p_spec;
update_ state_ spec;
update_gain_spec;
main_spec].

Abbreviated Proof

m Rewrote to not use scanf
m 21 lines of C code

m 211 lines of Coq proof

Lemma body_main:
semax__body Vprog Gprog f_main main_spec.
Proof.
start__function .
repeat forward.
forward_for__simple_bound
10
(EXi: Z,
(PROP (0 <i <10)
LOCAL((* Local variables))
SEP((* SEP = Separation Logic (predicates) x))

).

— (% ... Proof for the rest of the steps *)

10

Enter VCFloat

m The C program implements the spec, also
written in floating point

m But what about floating-point error?

m A realistic workflow is to write the
real-number spec, then analyse various
types of error of the implementation
(dicretization, roundoff)

m VCFloat allows reasoning about this, and

proves C implements real spec, within error
bound

Definition filter_step
(i :nat) (g: R)(m:R): R:=
g+ (1/i*(m—g).

Fixpoint alpha_filter

(guess : R) (i : nat) (ns : list R)
: R:=

match ns with

| [| = guess

| nins' =
let i' :=(i + 1)%nat in
let guess' := filter_step i
alpha_filter guess' i' ns'

end.

' guess n in

VCFloat2 [1], https://github.com/ak-2485/Kalman_Filter

11

https://github.com/ak-2485/Kalman_Filter

VCFloat Experience

Coq specification around same length as C program (30 lines)

Coq proof of program along with error bounds: 700 lines
m Easier to reason about real numbers instead of floats

m Typically separate overflow/NaN from the finite case
m Often requires proofs using Flocq, or adapting Coq library
m For example, ODEs and their integrators [4]

But you can get properties parametric in iteration count

VCFloat helps discover error bound with some modularity, but still requires
manual effort

12

What about Frama-C? m

VCFloat, VST you spend lots of time in the details

Brittle to code changes

Is there a less formal way?
Frama-C [3] parses C along with specs (as @ E
preconditions) Software Analyzers

Write specs in ACSL, ANSI C Specification Language

Dispatch to provers or SMT solvers

13

Frama-C and Floating Point

m Has a back-end for
Gappa

m But I've not had much
success with it :(

m This is about the max
complexity

m Notice it says nothing
about error

// True bound: <= 1732.050807568877293527446341505872
/*@
requires \valid_read(a);
requires valid_vect(a); // all elements finite
requires —-1000.0 <= a->v.1 &% a->v.7 <= 1000.0;
requires —-1000.0 <= a->v.7j &9 a->v.7 <= 1000.0;
requires —-1000.0 <= a->v.k &9 a->v.k <= 1000.0;
ensures \ts_finite(\result);
ensures 0.0 <= \result <= 1732.051;
*/
double norm(Vector_3* a)
{
return sqrt(a->v.i*a->v.i + a->v.j*a->v.j +
a—->v.k*xa->v.k);

14

What I'd Really Like

m An example from the
Frama-C Manual

m But fails, does not
know about
round_error and
exact

m Sylvie Boldo et al.
have results, but
required Coq proofs
(may also have
bit-rotted)

/*@
requires \abs(\ezact(z)) <= Ozlp-5;
requires \round_error (z) <= Ozlp-20;
ensures \abs(\ezact(\result) - \cos(\ezact(z)))
<= Ozlp-24;
ensures \round_error(\result)
<= \round_error(z) + 0x3p-24;
©e*/
float cosine(float x) {
return 1.0f - x * x * 0.5f;

}

15

Frama-C with No FP Still Useful!

This is why | like Frama-C:
incremental, modular FM

Null pointer exceptions still easy in C...

Start with a basic spec, move to all
callers

Have already found bugs using this
method

Are we white glove testers? Can we
start charging $2,000/hour
consulting???

/*@
requires \valid_read(a);
requires \valid_read(b);
requires \valid(C);
assigns *C;
*/
void axb(const Matrix_MxNx* a,
const Matrix_MxN* b,
Matrix_MxN* C);

16

Future Work

m Verify more and more of the Kalman Filter
m It's actually an extended Kalman Filter
m Can’t assume normal distribution on errors, measurement variables
m Better tools for C code verification
m formalization that valid assumptions mean this is the optimal filter for our
cases
m probability + Coq = scary, need to look into this more

17

Future Work (Cont.)

m Back to our application:
Extended Kalman Filter

m Straightforward
implementation easier to
reason about

m Straightforward impl takes
85% of runtime

m Looking for verifiable
transformations that improve
performance

void axb(const Matrix_ MxNx a,
const Matrix_MxNx* b,
Matrix_MxN* C) {

int r, c, i;
Matrix_MxN ret = {a->m, b->n};
for (r=0; r<a->m; r++) {
for (c=0; c<b->n; c++) {
ret.alr][c] = 0.0;
for (i=0; i<a->n; i++)
ret.a[r] [c] += a->alr] [i]*b->ali] [c];
}
}
*C = ret;

}

18

References | m

[1]

2]

(3]

[4]

(5]

ApPEL, A. W., AND KELLISON, A. E.
Vcfloat2: Floating-point error analysis in coq, 2022.
In Submission.

BECKER, A.
The a-p3- filter, 2023.
Available at https://www.kalmanfilter.net/alphabeta.html.

CuoQ, P., KIRCHNER, F., KosMATOV, N., PREVOSTO, V., SIGNOLES, J., AND YAKOBOWSKI, B.
Frama-c.

In Software Engineering and Formal Methods (Thessaloniki, Greece, Oct. 2012), SEFM (LNCS 7504),
Springer, pp. 233-247.

KELLISON, A. E., AND APPEL, A. W.

Verified numerical methods for ordinary differential equations.

In Software Verification and Formal Methods for ML-Enabled Autonomous Systems (Cham, 2022), O. Isac,
R. lvanov, G. Katz, N. Narodytska, and L. Nenzi, Eds., Springer International Publishing, pp. 147-163.

LeErOY, X.
In search of software perfection.
Available at https://youtu.be/1AUShx_3xRc, Nov. 2016.

19

https://www.kalmanfilter.net/alphabeta.html
https://youtu.be/lAU5hx_3xRc

	Appendix

