
Formal and Semi-Formal Verification of Floating-Point
Computations in C Programs

Samuel D. Pollard, Sandia National Labs, Livermore, California
FP Bench Community Meeting, 6 April 2023

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering
Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s

National Nuclear Security Administration under contract DE-NA0003525. SAND No. SAND2023-01442PE

Introduction

Sandia National Labs is a US government research & development center
Sandia does many things, for example

we develop high-consequence embedded control systems
also a large consumer of HPC for modeling and simulation

The former is good use case for formal methods
For example:

Kalman Filter
Problem size ∼ 20× 20 matrices
Implemented in C with minimal dependencies

2

Methodology, or, What Does “Formal” Mean Anyway?

When costs for failure are catastrophic, testing
is insufficient

So now what? Methods like
Uncertainty Quantification (statistical)
Modeling and Simulation (physics-based)
Model-Based Systems Engineering (state
machines)
Formal Methods

Have: English specifications, developers’
brains, source code
Goal: make a perfect model of a digital system
Tools: In my opinion, the biggest barrier to
FM adoption

3

Challenges with Proving Code Correct

In general it’s undecidable. But to
be more specific …

1. Formal Models of Hardware
ISAs are usually a good
abstraction to “stop” at
Sometimes require
axiomatization of hardware
(e.g. memory-mapped I/O)
Subtle differences between
architectures

2. Tooling
How strong of assurance do
you want? Strength of Claims

Au
to

m
at

io
n

Proof Assistants

Deductive Program Provers

Model Checkers

Static Analyzers

Property-Based Testing
Domain-Specific Provers

Holy Grail

Adapted from Leroy [5]
4

Models of Hardware

Even CompCert gets it wrong sometimes1

Our early analysis found an issue with NaN propagation for RISC-V

// This signaling nan should not be propagated because
// FCVT.S.D or FCVT.D.S (type casting) is _not_ one of the
// operations which preserves NaN payload
float x = single_of_bits(0xFF800009);
printf("FCVT.D.S snan(-9) = 0x%016llX = 0x7FF8000000000000\n",

bits_of_double((double) x));

$ ccomp -interp -quiet nan.c
FCVT.D.S snan(-9) = 0xFFF8000120000000 = 0x7FF8000000000000

^ observed ^ ^ correct ^

1https://github.com/AbsInt/CompCert/issues/428 5

https://github.com/AbsInt/CompCert/issues/428

Risc-V Standard

RISC-V Manual 2019, Sec 11.3
Might be a good intern project to search for more discrepancies

6

Application: Kalman Filter

Start with a
simplified case:
measuring the
weight of a bar
of gold with a
noisy scale
Kalman filter
assumes noise
normally
distributed

[2]

7

First Steps towards a Formally-Verified Kalman Filter

Three values to update
K Kalman gain,
∈ [0, 1]; how much
to prefer new
measurements to
best guess
curr current
estimation
p_var monotonically
nonincreasing

int main() {
double input, K;
double curr = 990.0; // Initial guess
double p_var = 100.0; // Estimation variance 102

double r_var = 225.0; // Measurement variance 152

while(scanf("%lf", &input) != EOF) {
K = update_gain(p_var, r_var);
curr = update_state(K, curr, input);
p_var = update_p(K, p_var);

}
return 0;

}

8

Writing the Spec with VST

Write the functional spec in
Coq
Challenge: VST does not
support printf, scanf
because of varargs

Definition update_p (K p : float) : float :=
((Float. of_int (Int . repr 1) − K) ∗ p)%F64.

Definition update_state (K x m : float) : float :=
(x + K ∗ (m − x))%F64.

Definition update_gain (p r : float) : float :=
(p / (p + r))%F64.

(∗ Other specs with the main function ∗)
Definition Gprog := [

update_p_spec;
update_state_spec;
update_gain_spec;
main_spec].

9

Abbreviated Proof

Rewrote to not use scanf
21 lines of C code
211 lines of Coq proof

Lemma body_main:
semax_body Vprog Gprog f_main main_spec.

Proof.
start_function .
repeat forward.
forward_for_simple_bound

10
(EX i: Z,

(PROP (0 ≤ i ≤ 10)
LOCAL((∗ Local variables ∗))
SEP((∗ SEP = Separation Logic (predicates) ∗))

)
).

− (∗ ... Proof for the rest of the steps ∗)

10

Enter VCFloat

The C program implements the spec, also
written in floating point
But what about floating-point error?
A realistic workflow is to write the
real-number spec, then analyse various
types of error of the implementation
(dicretization, roundoff)
VCFloat allows reasoning about this, and
proves C implements real spec, within error
bound

Definition filter_step
(i : nat) (g : R) (m : R) : R :=
g + (1 / i ∗ (m − g)).

Fixpoint alpha_filter
(guess : R) (i : nat) (ns : list R)
: R :=

match ns with
| [] ⇒ guess
| n:: ns' ⇒

let i ' := (i + 1)%nat in
let guess' := filter_step i ' guess n in
alpha_filter guess' i ' ns'

end.

VCFloat2 [1], https://github.com/ak-2485/Kalman_Filter
11

https://github.com/ak-2485/Kalman_Filter

VCFloat Experience

Coq specification around same length as C program (30 lines)
Coq proof of program along with error bounds: 700 lines
Easier to reason about real numbers instead of floats

Typically separate overflow/NaN from the finite case
Often requires proofs using Flocq, or adapting Coq library
For example, ODEs and their integrators [4]

But you can get properties parametric in iteration count
VCFloat helps discover error bound with some modularity, but still requires
manual effort

12

What about Frama-C?

VCFloat, VST you spend lots of time in the details
Brittle to code changes
Is there a less formal way?
Frama-C [3] parses C along with specs (as
preconditions)
Write specs in ACSL, ANSI C Specification Language
Dispatch to provers or SMT solvers

13

Frama-C and Floating Point

Has a back-end for
Gappa
But I’ve not had much
success with it :(
This is about the max
complexity
Notice it says nothing
about error

// True bound: <= 1732.05080756887729352744634150587236694280525381038062
/*@
requires \valid_read(a);
requires valid_vect(a); // all elements finite
requires -1000.0 <= a->v.i && a->v.i <= 1000.0;
requires -1000.0 <= a->v.j && a->v.j <= 1000.0;
requires -1000.0 <= a->v.k && a->v.k <= 1000.0;
ensures \is_finite(\result);
ensures 0.0 <= \result <= 1732.051;

*/
double norm(Vector_3* a)
{

return sqrt(a->v.i*a->v.i + a->v.j*a->v.j +
a->v.k*a->v.k);

}

14

What I’d Really Like

An example from the
Frama-C Manual
But fails, does not
know about
round_error and
exact
Sylvie Boldo et al.
have results, but
required Coq proofs
(may also have
bit-rotted)

/*@
requires \abs(\exact(x)) <= 0x1p-5;
requires \round_error (x) <= 0x1p-20;
ensures \abs(\exact(\result) - \cos(\exact(x)))

<= 0x1p-24;
ensures \round_error(\result)

<= \round_error(x) + 0x3p-24;
@*/
float cosine(float x) {

return 1.0f - x * x * 0.5f;
}

15

Frama-C with No FP Still Useful!

This is why I like Frama-C:
incremental, modular FM
Null pointer exceptions still easy in C…
Start with a basic spec, move to all
callers
Have already found bugs using this
method
Are we white glove testers? Can we
start charging $2,000/hour
consulting???

/*@
requires \valid_read(a);
requires \valid_read(b);
requires \valid(C);
assigns *C;

*/
void axb(const Matrix_MxN* a,

const Matrix_MxN* b,
Matrix_MxN* C);

16

Future Work

Verify more and more of the Kalman Filter
It’s actually an extended Kalman Filter

Can’t assume normal distribution on errors, measurement variables
Better tools for C code verification
formalization that valid assumptions mean this is the optimal filter for our
cases
probability + Coq = scary, need to look into this more

17

Future Work (Cont.)

Back to our application:
Extended Kalman Filter
Straightforward
implementation easier to
reason about
Straightforward impl takes
85% of runtime
Looking for verifiable
transformations that improve
performance

void axb(const Matrix_MxN* a,
const Matrix_MxN* b,
Matrix_MxN* C) {

int r, c, i;
Matrix_MxN ret = {a->m, b->n};
for (r=0; r<a->m; r++) {

for (c=0; c<b->n; c++) {
ret.a[r][c] = 0.0;
for (i=0; i<a->n; i++)
ret.a[r][c] += a->a[r][i]*b->a[i][c];

}
}
*C = ret;

}

18

References I

[1] Appel, A. W., and Kellison, A. E.
Vcfloat2: Floating-point error analysis in coq, 2022.
In Submission.

[2] Becker, A.
The α-β-γ filter, 2023.
Available at https://www.kalmanfilter.net/alphabeta.html.

[3] Cuoq, P., Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., and Yakobowski, B.
Frama-c.
In Software Engineering and Formal Methods (Thessaloniki, Greece, Oct. 2012), SEFM (LNCS 7504),
Springer, pp. 233–247.

[4] Kellison, A. E., and Appel, A. W.
Verified numerical methods for ordinary differential equations.
In Software Verification and Formal Methods for ML-Enabled Autonomous Systems (Cham, 2022), O. Isac,
R. Ivanov, G. Katz, N. Narodytska, and L. Nenzi, Eds., Springer International Publishing, pp. 147–163.

[5] Leroy, X.
In search of software perfection.
Available at https://youtu.be/lAU5hx_3xRc, Nov. 2016.

19

https://www.kalmanfilter.net/alphabeta.html
https://youtu.be/lAU5hx_3xRc

	Appendix

