When Does a Bit Matter? Techniques for
Verifying the Correctness of Assembly Languages
and Floating-Point Programs

Samuel D. Pollard
UNIVERSITY OF

O OREGON

Computer and Information Science

28 May 2021

Intro

Jr-t

HPCL

Introduction

UNIVERSITY OF

OREGON 2/52

O

Intro

ol
Framing My Thesis

» | enjoy working with either no abstraction or lots of
abstraction
Assembly ©
Java ®
Matlab ®
» | noticed a couple common abstractions which when they
failed were hard to fix
Instruction Set Architectures (ISAs)
Floating Point (FP)

UNIVERSITY OF

OREGON 2 /52

O

Intro

TET
5.0 .. HPCL
Some Intuitive Definitions

» High-level: using abstractions; not concerned with underlying
implementation of a program

» Low-level: the opposite

Key Challenge

Abstractions give insight into the nature of a program.

UNIVERSITY OF

OREGON e

O

Intro

r-=u
o a o HPCL
Dissertation Question

How can we apply high-level reasoning techniques about computer
programs to low-level implementations? Specifically,

How can we write specifications of instruction set architectures
(ISAs) that enable static analysis for program verification?

How can we formalize and quantify the error from
floating-point arithmetic in high-performance numerical
programs?

UNIVERSITY OF

OREGON 5 7

O

.HPCL

Binary Analysis

UNIVERSITY OF

OREGON 6/52

O

Binary Analysis

e Jr-of
Quameleon: A Lifter and Intermediate Language for
Binary Analysis

Based on previously published work in collaboration with
Philip Johnson-Freyd, Jon Aytac, Tristan Duckworth,
Michael J. Carson, Geoffrey C. Hulette, and

Christopher B. Harrison [6]

UNIVERSITY OF

OREGON B2

O

o
HPCL

Motivation

» Need to analyze binaries on old, obscure ISAs

ISAs not supported by existing tools
No machine-readable specification
Bad old days: No IEEE 754 floats, no 8-bit bytes

» Other tools gain lots of efficiency from expressive ISAs and
feature-rich Intermediate Languages (ILs)

» We instead require an adaptable IL

Fun example: cLEMENCy ISA invented for DEFCON had 9-bit
bytes, 27-bit words, middle-endian [9]

UNIVERSITY OF

OREGON e

O

Architectural Overview

ISA
Specification
DSL
Quameleon
M6800 Intermediate
Language
Other ISAs
Optimizations for
Analysis
UNIVERSITY OF
0 OREGON

| Concrete Execution Engine |

Custom Symbolic Execution
Engines

Weakest Precondition

LLVM/KLEE

Angr toolchain
(Symbolic Execution, etc.)

Abstract Interpretation

HPCL

9/52

HPCL

Architectural Overview

Quameleon
Intermediate
Language

UNIVERSITY OF

OREGON o/52

O

Binary Analysis

| | pr-of
Design Goals of the Quameleon Intermediate Language

QL)

» Sound analysis of binaries

» Lift binaries into a simple IL amenable to multiple analysis
backends

» Close to LLVM IR in spirit

» Size of QIL (~ 60 instructions) means easy to manipulate,
harder to write

» Balance this with Haskell as a macro-assembler for QIL

UNIVERSITY OF

OREGON

O

10/52

Binary An

o
Quameleon Intermediate Language (QIL)

Static Single Assignment (SSA)

Program consists of a list of blocks, single entry, multiple-exit

>
>
» Data are stored in bit vectors of parametrizable width
» Can read/write to locations like RAM, registers

>

Keep track of 1/O as sequence of reads/writes

UNIVERSITY OF

OREGON

O

11 /52

Binary Analysis

Haskell Embedded Domain Specific Language (DSL)

ISA
Specification
DSL
M6800
Other ISAs

UNIVERSITY OF

OREGON 55

O

Sample M6800

A <— OxE
A <— A & [0x40]

We want to match the manual precisely

UNIVERSITY OF

OREGON

O

o
HPCL

13/52

Binary Analysis

HPCL

...and Its Corresponding Semantics

AND r 1 -> do
ra <- getRegVal r
op <- loc8ToVal 1 -- Loc. of & buits in RAM
rv <- andBit ra op
z <- isZero rv
writeReg r rv
writeCC Zero z -- CC = Condition Code
branch next

UNIVERSITY OF

OREGON 15

O

Binary Ana

oo
HPCL

Back-ends

| Concrete Execution Engine |

Custom Symbolic Execution
Engines

| Weakest Precondition |

| LLVM/KLEE |

Angr toolchain
(Symbolic Execution, etc.)

| Abstract Interpretation |

UNIVERSITY OF

OREGON e

O

Binary Analysis

HPCL

Current Back-ends

Emulator
Bridge to angr

angr is a symbolic execution engine primarily for cybersecurity
Treat QIL as an ISA that angr can execute

UNIVERSITY OF

OREGON 1678

O

Binary Ana

HPCL

Optimizations

Optimizations for
Analysis

UNIVERSITY OF

OREGON e

O

Binary Analy

QIL-QIL Optimizations

The goal is to facilitate analysis

>
>
>
>

| 2

O

Constant folding
Branch to known value
Dead code elimination

Inlining with simple heuristics
e.g., inline everywhere

Defunctionalization

UNIVERSITY OF

OREGON

Reduce
code
size

Simplify
CFG

o
HPCL

18 /52

Binary Analysis

HPCL

Dissertation Question

How can we apply high-level reasoning techniques about computer
programs to low-level implementations? Specifically,
How can we write specifications of instruction set architectures
(ISAs) that enable static analysis for program verification?

How can we formalize and quantify the error from
floating-point arithmetic in high-performance numerical
programs?

UNIVERSITY OF

OREGON e

O

Jr-t

HPCL

A Statistical Analysis of Error in MPI Reduction Operations

UNIVERSITY OF

OREGON 20 /52

O

Reduce Error

o
A Statistical Analysis of Error in MPI Reduction Operations

Based off previously published work with Boyana Norris [7].

UNIVERSITY OF

OREGON . e

O

Jr-of
HPCL

A Brief Introduction to Floating-Point Arithmetic

The rest of this talk focuses on floating-point (FP) arithmetic and
floating-point operations (FLOPs)

Ariane V, the
<= $500 million
overflow

2020 Refund H 2021 Increase

$NaN L s T

UNIVERSITY oF [N @ ..

OREGON 22 /52

O

Reduce Error

Jr-=1

HPCL

We Don't Trust Floating Point

» Doesn't map perfectly to real
numbers

» Can't even represent 1/10 exactly

» Complex behavior of error and
exceptions

reogs
A

3%
FiGu
a
-

UNIVERSITY OF

OREGON b

O

Reduce Error

Jr-=1

HPCL

We Don't Trust Floating Point

» Doesn't map perfectly to real
numbers

» Can't even represent 1/10 exactly

» Complex behavior of error and
exceptions

But it's what we're stuck with

UNIVERSITY OF

OREGON e

O

Reduce Error

PR » ot
Floating-Point Arithmetic Is Not Associative

> Let @ be floating-point addition

» 0.14(0.240.3) = 0x1.3333333333334p-1
» (0.140.2) 0.3 = 0x1.3333333333333p-1
» Worse error when the magnitudes are different

UNIVERSITY OF

OREGON e

O

Reduce Error

PR » ot
Floating-Point Arithmetic Is Not Associative

Does this
bit matter?

» Let & be floating-point addition /

» 0.14(0.240.3) = 0x1.3333333333334p-1
» (0.140.2) 0.3 = 0x1.3333333333333p-1
» Worse error when the magnitudes are different

UNIVERSITY OF

OREGON e

O

Reduce Error

Absolute vs. Relative Error

Let X be an approximation for x. Then relative error is

A

X —X

X

and absolute error is

%=

» Think of absolute error as financial calculations; off by at
most 1/10 cent (one mill)

» Think of relative error as significant digits

UNIVERSITY OF

OREGON

O

HPCL

25 /52

Reduce Error

e
o HPCL
Bound on Relative Error

» Let - be one of {+,—,+, x} and ® be its corresponding
floating-point operation. Then

x-y=(x®y)(1+e) where |e|] <e. (1)

» For double-precision ¢ = 2753

» This holds only for x ® y # 0 and normal (not subnormal)

UNIVERSITY OF

OREGON 75

O

Reduce Error

Message Passing Interface (MPI)

» An API for communication between computers
» de facto standard for high-performance computing (HPC)
» Both “too high-level and too low-level” [8]

UNIVERSITY OF

OREGON e

O

Reduce Error

T
HPCL
MPI Reduce
» Assume an array A
of size n 0
» Reduce A to a single N
ale MPI_SUM g 0 3 0
e.g. _ =
» Distribute A across ’\ l\ l\
MPI ranks (each py) 0 1 23 456 7 8
» Unspecified but ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
usually deterministic A Ap 1 1 Aw

reduction order on
the same topology

UNIVERSITY OF

OREGON

O

28 /52

Reduce Error

How many ways are there to do this reduce?

» Depends on how we define acceptable reduction strategy
» We list four families

Canonical Left-Associative (Canon)

Fixed Order, Random Association (FORA)

Random Order, Random Association (RORA)

Random Order, Left-Associative (ROLA)

29 /52

Reduce Error

o
a . . HPCL
1. Canonical Left-Associative

» Left-associative
double acc = 0.0;

» Unambiguous: one for (i = 0:1 < N; i++) {
reduction strategy acc += Alil:

» No freedom to exploit }
parallelism

UNIVERSITY OF

OREGON 30/52

O

Reduce Error

***************** h.cof
The MPI Standard is Flexible

» Operations are assumed to be associative and commutative.

» You may specify a custom operation where commutativity is
fixed (but not associativity)

UNIVERSITY OF

OREGON e

O

o
HPCL

Reduction Families Permitted by MPI

Fixed Order, Random Association (FORA)

Random Order, Random Association (RORA)
Default if you call MPI_Reduce

Random Order, Left Associative (ROLA)

To compare with previous work [3]

» All of these have at least an exponential number of
associations

» We generate these by shuffling an array, then generating
random trees with Rémy's Procedure [4, § 7.2]

UNIVERSITY OF

OREGON e

O

Reduce Error

..-l'
B HPCL
Example Summation

With the commutative but nonassociative operator &,
n=nr but rn#r.

n=a®d(b®dc) rn=(c®b)da n=c®(bda)

L
L
(9]

UNIVERSITY OF

OREGON -

O

Reduce Error

e
HPCL
Absolute Error
Let S°% be floating point sum, Su be the true sum.
Wilkinson back in '63 proved summation error is bounded by
@D n n
> A= Sal <e(n—1)) " |Ad + O(). (2)
k=1 k=1

UNIVERSITY OF

OREGON o

O

Reduce Error

000000000000000e00
. -l
HPCL

Left and Random Associativity (ROLA vs. RORA)

. Random Ordering With and Without Random Associativit
» Histogram of 9 : Y

error

» 1000-digit float
(MPFR) is true
value

» ROLA is a 50001
biased sum

Zero | Canon ROLA : RORA

ROLA . RORA

15000 -

10000 -

Count

> worst RORA ~1e-09 06400 ' 1609 26209
has smaller SUMmpfr = SUMdouble
error than
canonical

n=50,000, |A]=2,000,000, A,~U(0,1)

Bound from (2): 4.44 x 10~*

UNIVERSITY OF

OREGON

O

35 /52

Nekbone

O

» Nekbone is a
computational fluid
dynamics proxy app

» We look at residual of
conjugate gradient

» We use SimGrid [2] to
try out 16 different
allreduce algorithms

UNIVERSITY OF

OREGON

Difference from Default Residual

oo
HPCL

Unique Results for Nekbone on a 72-node Fat Tree Cluster

15002 -1=6ap between doubles

5.72e-22 -

\z“\\ \6\"\

S

4.29¢-22 -

2.86e-22 -

1.43e-22 -

0.00e+00 = =——! —| | (B |_|
i

N N SN
g‘_@‘\i B a‘\\eb @& «\d‘g R A
e ¢ -

& A PP
¢ e o9 @0 %
- 'S4 W@
RS o
« o® &0

Allreduce Algorithm

<« SMp_rsag = -1.25e-07

36 /52

Reduce Error

HPCL

Dissertation Question

How can we apply high-level reasoning techniques about computer
programs to low-level implementations? Specifically,

How can we write specifications of instruction set architectures
(ISAs) that enable static analysis for program verification?

How can we formalize and quantify the error from
floating-point arithmetic in high-performance numerical
programs?

UNIVERSITY OF

OREGON e

O

Scalable Error Analysis for Floating-Point Program Optimization

UNIVERSITY OF

OREGON 38/52

O

The Challenges of Floating-Point

Suppose we want a safe floating-point divide? Easy, right?

float unsafe(float x) {
if (x==0.0)
return 0.0;
else
return 1.0 / x;

UNIVERSITY OF

OREGON 0 0

O

The Challenges of Floating-Point

Suppose we want a safe floating-point divide? Easy, right?

float unsafe(float x) {

if (x==0.0)
return 0.0;
else
return 1.0 / x;
}
wrong

UNIVERSITY OF

OREGON e

O

Truly Safe FP Divide

#include <math.h>
float reallysafe(float x) {
// Cast to int without changing bits
unsigned long ¢ = *(unsigned long*)&x;
if (isnan(x) || isinf(x)
[| (0x80000000 <= ¢ && c <= 0x80200000)
| | (0x00000000 <= ¢ && c <= 0x00200000))
return 0.0;
else
return 1.0 / x;

UNIVERSITY OF

OREGON e

O

Existing Static Error Analysis

» Tools like FPTaylor, Satire, Daisy

» Take as input a DSL describing a FP program and rages of its
inputs

» Output maximum possible error, found with global
optimziation

» No loops or conditionals
Slow: ~ 1.5 hours for 500 FLOPs

» Most are sound

v

UNIVERSITY OF

OREGON

O

41 /52

Why We Should Care About Soundness

» Underapproximating error
may be worse than
overapproximating

UNIVERSITY OF

OREGON .

O

Subnormal Numbers

O

We previously saw ¢, the bound on relative error. For very small
numbers, we must also define an absolute error

(xoy)=(-y)(1+e)+d

where |e| <€, |d]| <.
e.g., 6 = 27107 for double-precision

UNIVERSITY OF

OREGON e

o
HPCL

Motivation: Vector Normalization

Given a vector x, compute
X

X[l

Do this by multiplying each x; by 1//|x - x|.

q:

UNIVERSITY OF

OREGON 44 /52

O

o
HPCL

Dot Products

Define
_ne
T e
Unsound (existing bound)
[(x,y) = fit(x - y)| < valx] - Iy 3)
Our improvement
[, y) = fit(x - y)| < yalx] - |yl + nd(1 + yn-1), (4)

UNIVERSITY OF

OREGON B -

O

My Key Insight

Combine global search for the hard parts and computed
bounds for the majority of FLOPs

» FPTaylor on 500 FLOPs: 55,000 seconds
» FPTaylor + (4) on 10° FLOPs: 10 seconds
» Speedup of 10'* - Not bad!

» Need to compare with empirical error

UNIVERSITY OF

OREGON ..

O

Reciprocal Square Root

O

Input range and quality of initial guess have a large effect on

UNIVERSITY OF

OREGON

1e+00-

1e-05-

relerr

1e-10-

1e-15-

Newton's Method, Initial Guess 1st Order Taylor

s oo o

m

rsqrt

convergence

3

n=1000
0.1 <= x <=1000.0

iterations

HPCL

47 /52

.HPCL

Conclusion and Future Research Directions

UNIVERSITY OF

OREGON 48/52

O

Well. .. Did | Answer It?

How can we apply high-level reasoning techniques about computer
programs to low-level implementations? Specifically,

How can we write specifications of instruction set architectures
(ISAs) that enable static analysis for program verification?

How can we formalize and quantify the error from
floating-point arithmetic in high-performance numerical
programs?

UNIVERSITY OF

OREGON 2o0E8

O

Future Research Directions

» Binary Analysis
» The Emerging Field of Formal Numerical Methods
Blend probabilistic and deterministic error analysis

» Precomputation, Once Again

UNIVERSITY OF

OREGON o

O

Conclusion

» Verification of low-level programs is hard

» My techniques rely on detailed mathematical models and the
speed of modern computers

» They help people write correct, fast code

Quameleon: enables binary analysis on uncommon ISAs

A statistical analysis of error for parallel reduction algorithms
A sound analysis of error for optimized math kernels to
quantify the performance-accuracy tradeoff

UNIVERSITY OF

OREGON

O

51/52

https://sampollard.github.io/research

Conclusion

oo
HPCL

Conclusion

» Verification of low-level programs is hard

» My techniques rely on detailed mathematical models and the
speed of modern computers
» They help people write correct, fast code

Quameleon: enables binary analysis on uncommon ISAs

A statistical analysis of error for parallel reduction algorithms
A sound analysis of error for optimized math kernels to
quantify the performance-accuracy tradeoff

https://sampollard.github.io/research
Thank you!

UNIVERSITY OF

OREGON i

O

https://sampollard.github.io/research

Motivation for Precomputation: Quake Ill: Arena

float Q_ rsqrt(float number) { » “Magic” constant
long i 0x5£3759df precomputed for
float x2, y; efficiency [5]

const float threehalfs = 1.5F;

x2 = number * 0.5F;

y = number;,

i = *(long *) &y;

i = 0x5f3759df — (i >> 1);

y = *(float *) &i;

y = y * (threehalfs — (x2*y*y));
return y;

UNIVERSITY OF

OREGON o2

O

Motivation for Precomputation: Quake Ill: Arena

float Q_ rsqrt(float number) { » “Magic” constant
long i 0x5£3759df precomputed for
float x2, y; efficiency [5]

const float threehalfs = 1.5F;
x2 = number * 0.5F;
y = number;,

i = *(long *) &vy; What does this
li = 0x5£3759df — (i >> 1); |[¢+—————do to a real
y = *(float *) &i; number?
y = y * (threehalfs — (x2*y*y));
return y;
}
O orEGON oSz

erences

References |

O

[1]

2]

[3]

[4]

Arantes, P. R., Saha, A., and Palermo, G.
Fighting covid-19 using molecular dynamics simulations.
ACS Central Science 6, 10 (2020), 1654-1656.

Casanova, H., Giersch, A., Legrand, A., Quinson, M., and Suter, F.

Versatile, scalable, and accurate simulation of distributed applications and
platforms.

Journal of Parallel and Distributed Computing 74, 10 (June 2014), 2899-2917.

Chapp, D., Johnston, T., and Taufer, M.
On the need for reproducible numerical accuracy through intelligent runtime
selection of reduction algorithms at the extreme scale.

In IEEE International Conference on Cluster Computing (Chicago, IL, USA, Sept.

2015), IEEE, pp. 166-175.

Knuth, D. E.

The Art of Computer Programming: Generating All Trees; History of
Combinatorial Generation, vol. 4 Fascicle 4.

Addison-Wesley, Boston, MA, USA, 2006.

UNIVERSITY OF

OREGON

=1

HPCL

1/5

Pt

HPCL

References |l

[5] Lomont, C.
Fast inverse square root, 2003.
Available at http://lomont.org/papers/2003/InvSqrt.pdf.

[6] Pollard, S. D., Johnson-Freyd, P., Aytac, J., Duckworth, T., Carson, M. J.,
Hulette, G. C., and Harrison, C. B.
Quameleon: A lifter and intermediate language for binary analysis.
In Workshop on Instruction Set Architecture Specification (Portland, OR, USA,
Sept. 2019), SpISA '19, pp. 1-4.

[7] Pollard, S. D., and Norris, B.
A statistical analysis of error in MPI reduction operations.
In Fourth International Workshop on Software Correctness for HPC Applications
(Nov. 2020), Correctness, IEEE, pp. 49-57.

UNIVERSITY OF

OREGON g

O

http://lomont.org/papers/2003/InvSqrt.pdf

.HPCL

References ||

[8] Snir, M.
Mpi is too high-level; mpi is too low-level.
MPI Symposium: 25 Years of MPI, Sept. 2017.
Available at https:
//www.mcs.anl.gov/mpi-symposium/slides/marc_snir_25yrsmpi.pdf.

[9] Trail of Bits.
An extra bit of analysis for clemency.
Available at https://blog.trailofbits.com/2017/07/30/
an-extra-bit-of-analysis-for-clemency/.

UNIVERSITY OF

OREGON 2 s

O

https://www.mcs.anl.gov/mpi-symposium/slides/marc_snir_25yrsmpi.pdf
https://www.mcs.anl.gov/mpi-symposium/slides/marc_snir_25yrsmpi.pdf
https://blog.trailofbits.com/2017/07/30/an-extra-bit-of-analysis-for-clemency/
https://blog.trailofbits.com/2017/07/30/an-extra-bit-of-analysis-for-clemency/

Publications |

O

[7] and [6] part of this dissertation

[10] Samuel D. Pollard and Boyana Norris.
A statistical analysis of error in MPI reduction operations.
In Fourth International Workshop on Software Correctness for HPC Applications,
Correctness, pages 49-57. IEEE, November 2020.

[11] Samuel D. Pollard, Philip Johnson-Freyd, Jon Aytac, Tristan Duckworth,
Michael J. Carson, Geoffrey C. Hulette, and Christopher B. Harrison.
Quameleon: A lifter and intermediate language for binary analysis.

In Workshop on Instruction Set Architecture Specification, SpISA '19, pages 1-4,
Portland, OR, USA, September 2019.
[12] Samuel D. Pollard, Sudharshan Srinivasan, and Boyana Norris.
A performance and recommendation system for parallel graph processing
implementations: Work-in-progress.
In Companion of the 10th ACM/SPEC International Conference on Performance
Engineering, ICPE '19, pages 25-28, Mumbai, India, April 2019. ACM.
Acceptance Rate: 43% (10/23).

OREGON

1=t

HPCL

4/5

Pt

HPCL

Publications 1l

(13]

[14]

[15]

O

Samuel D. Pollard, Nikhil Jain, Stephen Herbein, and Abhinav Bhatele.
Evaluation of an interference-free node allocation policy on fat-tree clusters.

In Proceedings of the International Conference for High Performance Computing,
Networking, Storage, and Analysis, SC '18, pages 26:1-26:13, Dallas, TX, USA,
November 2018. IEEE Press.

Acceptance rate: 24% (68/288).

Sriram Srinivasan, Samuel D. Pollard, Sajal K. Das, Boyana Norris, and Sanjukta
Bhowmick.

A shared-memory algorithm for updating tree-based properties of large dynamic
networks.

IEEE Transactions on Big Data, pages 1-15, September 2018.

Samuel D. Pollard and Boyana Norris.

A comparison of parallel graph processing implementations.

In IEEE International Conference on Cluster Computing, CLUSTER, pages
657-658, Honolulu, HI, USA, September 2017. IEEE Computer Society.

UNIVERSITY OF

OREGON :

	Introduction
	Binary Analysis
	A Statistical Analysis of Error in MPI Reduction Operations
	Scalable Error Analysis for Floating-Point Program Optimization
	Conclusion and Future Research Directions
	Appendix
	References

