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Framing My Thesis

» | enjoy working with either no abstraction or lots of
abstraction
Assembly ©
Java ®
Matlab ®
» | noticed a couple common abstractions which when they
failed were hard to fix
Instruction Set Architectures (ISAs)
Floating Point (FP)
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Some Intuitive Definitions

» High-level: using abstractions; not concerned with underlying
implementation of a program

» Low-level: the opposite

Key Challenge

Abstractions give insight into the nature of a program.
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Dissertation Question

How can we apply high-level reasoning techniques about computer
programs to low-level implementations? Specifically,

How can we write specifications of instruction set architectures
(ISAs) that enable static analysis for program verification?

How can we formalize and quantify the error from
floating-point arithmetic in high-performance numerical
programs?
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Quameleon: A Lifter and Intermediate Language for
Binary Analysis

Based on previously published work in collaboration with
Philip Johnson-Freyd, Jon Aytac, Tristan Duckworth,
Michael J. Carson, Geoffrey C. Hulette, and

Christopher B. Harrison [6]
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Motivation

» Need to analyze binaries on old, obscure ISAs

ISAs not supported by existing tools
No machine-readable specification
Bad old days: No IEEE 754 floats, no 8-bit bytes

» Other tools gain lots of efficiency from expressive ISAs and
feature-rich Intermediate Languages (ILs)

» We instead require an adaptable IL

Fun example: cLEMENCy ISA invented for DEFCON had 9-bit
bytes, 27-bit words, middle-endian [9]

UNIVERSITY OF

OREGON e

O




Architectural Overview

ISA
Specification
DSL
Quameleon
M6800 Intermediate
Language
Other ISAs
Optimizations for
Analysis
UNIVERSITY OF
0 OREGON

| Concrete Execution Engine |

Custom Symbolic Execution
Engines

Weakest Precondition

LLVM/KLEE

Angr toolchain
(Symbolic Execution, etc.)

Abstract Interpretation

HPCL
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Architectural Overview

Quameleon
Intermediate
Language
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Design Goals of the Quameleon Intermediate Language

QL)

» Sound analysis of binaries

» Lift binaries into a simple IL amenable to multiple analysis
backends

» Close to LLVM IR in spirit

» Size of QIL (~ 60 instructions) means easy to manipulate,
harder to write

» Balance this with Haskell as a macro-assembler for QIL
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Quameleon Intermediate Language (QIL)

Static Single Assignment (SSA)

Program consists of a list of blocks, single entry, multiple-exit

>
>
» Data are stored in bit vectors of parametrizable width
» Can read/write to locations like RAM, registers

>

Keep track of 1/O as sequence of reads/writes
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Binary Analysis

Haskell Embedded Domain Specific Language (DSL)

ISA
Specification
DSL
M6800
Other ISAs
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Sample M6800

A <— OxE
A <— A & [0x40]

We want to match the manual precisely
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...and Its Corresponding Semantics

AND r 1 -> do
ra <- getRegVal r
op <- loc8ToVal 1 -- Loc. of & buits in RAM
rv <- andBit ra op
z <- isZero rv
writeReg r rv
writeCC Zero z -- CC = Condition Code
branch next
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Back-ends

| Concrete Execution Engine |

Custom Symbolic Execution
Engines

| Weakest Precondition |

| LLVM/KLEE |

Angr toolchain
(Symbolic Execution, etc.)

| Abstract Interpretation |
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Current Back-ends

Emulator
Bridge to angr

angr is a symbolic execution engine primarily for cybersecurity
Treat QIL as an ISA that angr can execute
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Optimizations

Optimizations for
Analysis
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Binary Analy

QIL-QIL Optimizations

The goal is to facilitate analysis

>
>
>
>

| 2

O

Constant folding
Branch to known value
Dead code elimination

Inlining with simple heuristics
e.g., inline everywhere

Defunctionalization
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Dissertation Question

How can we apply high-level reasoning techniques about computer
programs to low-level implementations? Specifically,
How can we write specifications of instruction set architectures
(ISAs) that enable static analysis for program verification?

How can we formalize and quantify the error from
floating-point arithmetic in high-performance numerical
programs?
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A Statistical Analysis of Error in MPI Reduction Operations
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o
A Statistical Analysis of Error in MPI Reduction Operations

Based off previously published work with Boyana Norris [7].
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A Brief Introduction to Floating-Point Arithmetic

The rest of this talk focuses on floating-point (FP) arithmetic and
floating-point operations (FLOPs)

Ariane V, the
<= $500 million
overflow

2020 Refund H 2021 Increase

$NaN L s T
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We Don't Trust Floating Point

» Doesn't map perfectly to real
numbers

» Can't even represent 1/10 exactly

» Complex behavior of error and
exceptions

reogs
A

3%
FiGu
a
-
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Reduce Error
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HPCL

We Don't Trust Floating Point

» Doesn't map perfectly to real
numbers

» Can't even represent 1/10 exactly

» Complex behavior of error and
exceptions

But it's what we're stuck with
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Floating-Point Arithmetic Is Not Associative

> Let @ be floating-point addition

» 0.14(0.240.3) = 0x1.3333333333334p-1
» (0.140.2) 0.3 = 0x1.3333333333333p-1
» Worse error when the magnitudes are different

UNIVERSITY OF

OREGON e

O




Reduce Error
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Floating-Point Arithmetic Is Not Associative

Does this
bit matter?

» Let & be floating-point addition /

» 0.14(0.240.3) = 0x1.3333333333334p-1
» (0.140.2) 0.3 = 0x1.3333333333333p-1
» Worse error when the magnitudes are different
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Reduce Error

Absolute vs. Relative Error

Let X be an approximation for x. Then relative error is

A

X —X

X

and absolute error is

%=

» Think of absolute error as financial calculations; off by at
most 1/10 cent (one mill)

» Think of relative error as significant digits
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Bound on Relative Error

» Let - be one of {+,—,+, x} and ® be its corresponding
floating-point operation. Then

x-y=(x®y)(1+e) where |e|] <e. (1)

» For double-precision ¢ = 2753

» This holds only for x ® y # 0 and normal (not subnormal)
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Reduce Error

Message Passing Interface (MPI)

» An API for communication between computers
» de facto standard for high-performance computing (HPC)
» Both “too high-level and too low-level” [8]
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MPI Reduce
» Assume an array A
of size n 0
» Reduce A to a single N
ale MPI_SUM g 0 3 0
e.g. _ =
» Distribute A across ’\ l\ l\
MPI ranks (each py) 0 1 23 456 7 8
» Unspecified but ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
usually deterministic A Ap 1 1 Aw

reduction order on
the same topology
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Reduce Error

How many ways are there to do this reduce?

» Depends on how we define acceptable reduction strategy
» We list four families

Canonical Left-Associative (Canon)

Fixed Order, Random Association (FORA)

Random Order, Random Association (RORA)

Random Order, Left-Associative (ROLA)

29 /52
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1. Canonical Left-Associative

» Left-associative
double acc = 0.0;

» Unambiguous: one for (i = 0:1 < N; i++) {
reduction strategy acc += Alil:

» No freedom to exploit }
parallelism
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Reduce Error

***************** h.cof
The MPI Standard is Flexible

» Operations are assumed to be associative and commutative.

» You may specify a custom operation where commutativity is
fixed (but not associativity)
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Reduction Families Permitted by MPI

Fixed Order, Random Association (FORA)

Random Order, Random Association (RORA)
Default if you call MPI_Reduce

Random Order, Left Associative (ROLA)

To compare with previous work [3]

» All of these have at least an exponential number of
associations

» We generate these by shuffling an array, then generating
random trees with Rémy's Procedure [4, § 7.2]
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Example Summation

With the commutative but nonassociative operator &,
n=nr but rn#r.

n=a®d(b®dc) rn=(c®b)da n=c®(bda)

L
L
(9]
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Absolute Error
Let S°% be floating point sum, Su be the true sum.
Wilkinson back in '63 proved summation error is bounded by
@D n n
> A= Sal <e(n—1)) " |Ad + O(). (2)
k=1 k=1
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Left and Random Associativity (ROLA vs. RORA)

. Random Ordering With and Without Random Associativit
» Histogram of 9 : Y

error

» 1000-digit float
(MPFR) is true
value

» ROLA is a 50001
biased sum

Zero | Canon ROLA : RORA

ROLA . RORA

15000 -

10000 -

Count

> worst RORA ~1e-09 06400 ' 1609 26209
has smaller SUMmpfr = SUMdouble
error than
canonical

n=50,000, |A]=2,000,000, A,~U(0,1)

Bound from (2): 4.44 x 10~*
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Nekbone

O

» Nekbone is a
computational fluid
dynamics proxy app

» We look at residual of
conjugate gradient

» We use SimGrid [2] to
try out 16 different
allreduce algorithms
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Unique Results for Nekbone on a 72-node Fat Tree Cluster

15002 -1=6ap between doubles

5.72e-22 -
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Allreduce Algorithm
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Dissertation Question

How can we apply high-level reasoning techniques about computer
programs to low-level implementations? Specifically,

How can we write specifications of instruction set architectures
(ISAs) that enable static analysis for program verification?

How can we formalize and quantify the error from
floating-point arithmetic in high-performance numerical
programs?
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Scalable Error Analysis for Floating-Point Program Optimization
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The Challenges of Floating-Point

Suppose we want a safe floating-point divide? Easy, right?

float unsafe(float x) {
if (x==0.0)
return 0.0;
else
return 1.0 / x;
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The Challenges of Floating-Point

Suppose we want a safe floating-point divide? Easy, right?

float unsafe(float x) {

if (x==0.0)
return 0.0;
else
return 1.0 / x;
}
wrong
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Truly Safe FP Divide

#include <math.h>
float reallysafe(float x) {
// Cast to int without changing bits
unsigned long ¢ = *(unsigned long*)&x;
if (isnan(x) || isinf(x)
[ | (0x80000000 <= ¢ && c <= 0x80200000)
| | (0x00000000 <= ¢ && c <= 0x00200000))
return 0.0;
else
return 1.0 / x;
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Existing Static Error Analysis

» Tools like FPTaylor, Satire, Daisy

» Take as input a DSL describing a FP program and rages of its
inputs

» Output maximum possible error, found with global
optimziation

» No loops or conditionals
Slow: ~ 1.5 hours for 500 FLOPs

» Most are sound

v
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Why We Should Care About Soundness

» Underapproximating error
may be worse than
overapproximating
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Subnormal Numbers

O

We previously saw ¢, the bound on relative error. For very small
numbers, we must also define an absolute error

(xoy)=(-y)(1+e)+d

where |e| <€, |d]| <.
e.g., 6 = 27107 for double-precision
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Motivation: Vector Normalization

Given a vector x, compute
X

X[l

Do this by multiplying each x; by 1//|x - x|.

q:
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Dot Products

Define
_ne
T e
Unsound (existing bound)
[(x,y) = fit(x - y)| < valx] - Iy 3)
Our improvement
[, y) = fit(x - y)| < yalx] - |yl + nd(1 + yn-1), (4)
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My Key Insight

Combine global search for the hard parts and computed
bounds for the majority of FLOPs

» FPTaylor on 500 FLOPs: 55,000 seconds
» FPTaylor + (4) on 10° FLOPs: 10 seconds
» Speedup of 10'* - Not bad!

» Need to compare with empirical error
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Reciprocal Square Root

O

Input range and quality of initial guess have a large effect on

UNIVERSITY OF
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1e+00-

1e-05-

relerr

1e-10-

1e-15-

Newton's Method, Initial Guess 1st Order Taylor

s oo o

m

rsqrt

convergence

3

n=1000
0.1 <= x <=1000.0

iterations

HPCL
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Conclusion and Future Research Directions
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Well. .. Did | Answer It?

How can we apply high-level reasoning techniques about computer
programs to low-level implementations? Specifically,

How can we write specifications of instruction set architectures
(ISAs) that enable static analysis for program verification?

How can we formalize and quantify the error from
floating-point arithmetic in high-performance numerical
programs?
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Future Research Directions

» Binary Analysis
» The Emerging Field of Formal Numerical Methods
Blend probabilistic and deterministic error analysis

» Precomputation, Once Again
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Conclusion

» Verification of low-level programs is hard

» My techniques rely on detailed mathematical models and the
speed of modern computers

» They help people write correct, fast code

Quameleon: enables binary analysis on uncommon ISAs

A statistical analysis of error for parallel reduction algorithms
A sound analysis of error for optimized math kernels to
quantify the performance-accuracy tradeoff
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https://sampollard.github.io/research

Conclusion
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Conclusion

» Verification of low-level programs is hard

» My techniques rely on detailed mathematical models and the
speed of modern computers
» They help people write correct, fast code

Quameleon: enables binary analysis on uncommon ISAs

A statistical analysis of error for parallel reduction algorithms
A sound analysis of error for optimized math kernels to
quantify the performance-accuracy tradeoff

https://sampollard.github.io/research
Thank you!
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Motivation for Precomputation: Quake Ill: Arena

float Q_ rsqrt(float number) { » “Magic” constant
long i 0x5£3759df precomputed for
float x2, y; efficiency [5]

const float threehalfs = 1.5F;

x2 = number * 0.5F;

y = number;,

i = *(long *) &y;

i = 0x5f3759df — (i >> 1);

y = *(float *) &i;

y = y * (threehalfs — (x2*y*y));
return y;
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Motivation for Precomputation: Quake Ill: Arena

float Q_ rsqrt(float number) { » “Magic” constant
long i 0x5£3759df precomputed for
float x2, y; efficiency [5]

const float threehalfs = 1.5F;
x2 = number * 0.5F;
y = number;,

i = *(long *) &vy; What does this
li = 0x5£3759df — (i >> 1); |[¢+—————do to a real
y = *(float *) &i; number?
y = y * (threehalfs — (x2*y*y));
return y;
}
O orEGON oSz
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