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Steps to (Compute a Graph Property Quickly) HPCLHPCL

1 Find a package
2 Nail down dependencies
3 Reformat graph input file
4 Learn how to use CLI/API
5 Run gamut of experiments
6 Measure performance of experiments
7 Combine, analyze, and decide
8 Link with existing workflow
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Steps to Quickly (Compute a Graph Property Quickly) HPCLHPCL

1 Find a package
2 Nail down dependencies
3 Reformat graph input file
4 Learn how to use CLI/API
5 Run gamut of experiments on my computer
6 Measure performance of such experiments
7 Combine, analyze, and decide
8 Link with existing workflow

3 / 21



Parallel Graph Algorithms HPCLHPCL

I Social network analysis [2]
• Twitter has its own graph processing package (GraphJet), Google has its own

language (Pregel)
I Bioinformatics [4]

• Tend to have more complex analysis of smaller datasets
• non-e.g. Needleman-Wunsch algorithm for global sequence alignment

4 / 21



Workflow HPCLHPCL
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Before Reproducibility. . . HPCLHPCL

I Ensure we’re actually
measuring the right
times!

I File read time was
mistakenly used as
performance
measurement

I Abridged log file from GraphMat
• finished file read. time: 2.65211
• load graph: 5.91229 sec
• initialize engine: 8.32081e-05 sec
• run algorithm 1 (count degree): 0.0555639 sec
• run algorithm 2 (compute PageRank): 0.149445 sec
• print output: 0.0641179 sec
• deinitialize engine: 0.00022006 sec
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File Formats HPCLHPCL

I Binary can be much faster (factor
of at least 3)
• No parsing, can just store into

array
• Less portable
• May be serialization of internal

data structures
I 0-indexed or 1-indexed?

• May not be interchangeable

this?

55555 44444
44444 22222
11111 66666

or this?

5 4
4 2
1 6

or this?

4 3
3 1
0 5
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Differing Results HPCLHPCL

I PageRank stopping criterion
• ||pt − pt−1||1
• ||pt − pt−1||∞
• Stop when no weights change (machine ε)

I Triangle counting
• Count both directions of triangle?
• One, two, or three triangles?

A

B C
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Starting (Root) Vertices HPCLHPCL

I Performance of BFS and SSSP
depends on where you start

I More reachable vertices

Root

A

B
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D

vs.

Root

A

B C

D
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Once We Have Reproducibility HPCLHPCL

I Running experiments is expensive
• Read in a 10+GB file just to do

BFS once
• Batched is attractive but requires

per-package modification

NAME ST TIME NODES
epg1t-22 R 12:24:12 1

epg28t-22 R 4:45:20 1
epg32t-22 R 3:15:10 1
epg48t-22 R 2:45:54 1
epg54t-22 R 2:45:54 1
epg56t-22 R 2:45:54 1
epg40t-22 R 2:47:34 1
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How Reproducible is Reproducible Enough? HPCLHPCL

[1]

I We want better performance!
• Computer upgrades, new package versions
• All the lovely breaking changes that come along with them

11 / 21



Parameter Tuning HPCLHPCL

I BFS - α and β (direction-optimizing). This is a combination of:
• bottom-up: unvisited nodes searching for visited parents
• top-down: visited nodes searching for unvisited children

I SSSP - ∆-stepping; order nodes using ranges of size ∆ to distribute work
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Early Results HPCLHPCL
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Early Results HPCLHPCL
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Be Careful with Speedup HPCLHPCL

I What if I naïvely wrote serial implementation?
I Graph500 has Serial, OpenMP, and MPI implementations
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Recommendation and Ranking HPCLHPCL

I Pick the best graph package for your hardware and graph
1 Compute features of a graph

This may be expensive

2 Train a model based on these features

I Apply work in linear solver recommendations [5] to graph processing packages
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Computing Features HPCLHPCL

I We use 12 features (the
ones computed on SNAP)

I e.g. # vertices, # edges,
diameter, clustering
coefficient

Figure: A scale free network has low diameter [3]
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Training Models HPCLHPCL
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Algorithm

I Worst
case: BFS
with factor
of 2

I Best case:
TC with
factor of
0.5
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Classification HPCLHPCL

(b) Random Forest

TC

good bad
good 43 1
bad 0 118

BFS

good bad
good 110 0
bad 0 147

PR

good bad
good 75 0
bad 1 193

SSSP

good bad
good 51 11
bad 9 198
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Conclusion HPCLHPCL

I Manually selecting between dozens of implementations is infeasible
I Automated installation, performance experiments can help reproducibility
I Computing graph features and performance models beforehand can facilitate

package selection
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Future Directions HPCLHPCL

I Leaderboard of performance results (like Graph500)
I Containerization

• Singularity
• Docker
• Extreme-Scale Scientific Software Stack (E4S) software stack
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