Reproducibility in Parallel Graph Algorithms

Samuel D. Pollard, Sudharshan Srinivasan, and Boyana Norris
UNIVERSITY OF

O OREGON

Computer and Information Science

SIAM CSE 2019, MS168: Reproducibility in Network Algorithms I
February 26, 2019

HPCL

Steps to (Compute a Graph Property Quickly) pri

=

Find a package

]

Nail down dependencies
Reformat graph input file
Learn how to use CLI/API

Run gamut of experiments

(I~ I

Measure performance of experiments

o

Combine, analyze, and decide

Link with existing workflow

O GrEGoN 2/21

Steps to Quickly (Compute a Graph Property Quickly) '!;:!'

Find-apackage

Nat-down—dependencies

Ref . :
tearmhow-to—tse—CHHARY

Run gamut of experiments on my computer
[@ Measure performance of such experiments

B Link with existing workflow

O GrEGoN -

Parallel Graph Algorithms '!;:!'

» Social network analysis [2]
Twitter has its own graph processing package (GraphlJet), Google has its own
language (Pregel)

» Bioinformatics [4]

Tend to have more complex analysis of smaller datasets
non-e.g. Needleman-Wunsch algorithm for global sequence alignment

UNIVERSITY OF

OREGON o

O

Workflow

dataset.el

1. Install Libraries

2. Homogenize Datasets

Performance
Predictions

Performance
Visualizations

UNIVERSITY OF

OREGON

O

5a. Figure Generation

Sb. Model Training

root vertices for
BFS, SSSP

dataset.graphmat

dataset.graph500

Experimental
Features

3. Run Experiments

Plain Text Log Files

4. Clean Data

HPCL

5/21

Before Reproducibility. . . '!;Z!'
» Ensure we're actually » Abridged log file from GraphMat
measuring the right finished file read. time: 2.65211
times! load graph: 5.91229 sec

initialize engine: 8.32081e-05 sec

» File read time was run algorithm 1 (count degree): 0.0555639 sec

mistakenly used as run algorithm 2 (compute PageRank): 0.149445 sec
performance print output: 0.0641179 sec
measurement deinitialize engine: 0.00022006 sec

O orEGON

6/21

File Formats """

HPCL

» Binary can be much faster (factor
of at least 3)

No parsing, can just store into this? or this? or this?
array

Less portable 55555 44444 54

May be serialization of internal 44444 22222 4 2 31
data structures 11111 66666 16 05

» 0O-indexed or 1-indexed?
May not be interchangeable

UNIVERSITY OF

OREGON

O

7/21

Differing Results '!F:!'

» PageRank stopping criterion e e

Pt — pe—1ll1

||pt - pt71||oo

Stop when no weights change (machine ¢)
» Triangle counting

Count both directions of triangle?
One, two, or three triangles?

UNIVERSITY OF

OREGON 8 /21

O

Starting (Root) Vertices '!;:!'

» Performance of BFS and SSSP

vSs.
depends on where you start

» More reachable vertices

(8 -er-@-0-E)

O GrEGoN 9/21

Once We Have Reproducibility '!;:!'

NAME ST TIME NODES

» Running experiments is expensive epg;t_gz R 12:24:33 1
Read in a 10+GB file just to do epg28t-22 R $45:

BFS once epg32t-22 R 3:15:10 1

Batched is attractive but requires epg48t-22 R 2:45:54 1

per-package modification epgb4t-22 R 2:45:54 1

epgb6t-22 R 2:45:54 1

epgd40t-22 R 2:47:34 1

UNIVERSITY OF

OREGON 10/21

O

How Reproducible is Reproducible Enough? '!;:!'

e = ARES =2

g
, \ r
S anvgml)
- /

Nuclear
a

NN \ /
\ LAPACK \j\ ﬁ/ N Hors A
\ w\ ' S
~ N\ B
BLAS hpdf | . — A —

Types of Packages
-\Ii\u’”_’***— cmake 7_77;:?’_(?{;’;;\7 " m
[1]
» We want better performance!
Computer upgrades, new package versions
O | OREGON All the lovely breaking changes that come along with them

11/21

; | Bl |
Parameter Tuning 'H;CL'

» BFS - « and /3 (direction-optimizing). This is a combination of:
bottom-up: unvisited nodes searching for visited parents
top-down: visited nodes searching for unvisited children

» SSSP - A-stepping; order nodes using ranges of size A to distribute work

UNIVERSITY OF

OREGON 1)1

O

Early Results Do

HPCL

SSSP Data Structure

Construction SSSP Time
o _ Scale = 22
- [} o
o — = 8
[sp)
_— —
» Data . o 2 ‘ —
@ w0 | 0
structure g2 o 2
8 o | 8 w9
construc- & o 3 °
- .) Py -
tion time E 24 E —_—
. o

sometimes ° °

[e]
not split 2 .| ==

T T o T T T T

GAP GraphMat GAP GraphBIG ~ GraphMat PowerGraph

UNIVERSITY OF
O OREGON

13 /21

Early Results

BFS Speedup
o Scale = 23
N Li -X.
—— Linear % T AT,
o |-0- GraphBIG T b Tx
- Graph500 - ¥
=1 -4 GraphMat)
§ O == GAP Z @ \
o 4
o T T T T T T I
1 2 8 16 32 64 72
Threads

HPCL

~ 16 % 2%
~ 135M
edges

14 /21

Be Careful with Speedup '!F:!'

» What if | naively wrote serial implementation?
» Graph500 has Serial, OpenMP, and MPI implementations

UNIVERSITY OF

OREGON 5

O

Recommendation and Ranking '!;:!'

» Pick the best graph package for your hardware and graph
Compute features of a graph
m This may be expensive
Train a model based on these features

» Apply work in linear solver recommendations [5] to graph processing packages

UNIVERSITY OF

OREGON 1

O

Computing Features

» We use 12 features (the
ones computed on SNAP)

> e.g. # vertices, # edges,
diameter, clustering
coefficient

UNIVERSITY OF

OREGON

O

Figure: A scale free network has low diameter [3]

17/21

Training Models 'EFZ!'

Linear Regression Results

03- » Worst
Method 7 Method Method case: BFS
02 . None a . None . None W|th 'Fa ctor
e ’ . Norm @ . Norm g . Norm
] z £ of 2
RN Bern = B
044 L Lo I e [0 ricge » Best case:
TC with
factor of
0.0- 0-=— — 0-
&% e <© &% FeFf <© &% FeF ©
Algorithm

O | 6rEGON 18/21

Classification '!Fc!'

(b) Random Forest

good bad

good | 43 1

¢l had | 0 118
good bad

good | 110 0

BFS | had | 0 147
good bad

good | 75 0

PR had | 1 103
good bad

good | 51 11

SSSP 1 g | 9 108

O orEGON

19/21

Conclusion '!;:!'

» Manually selecting between dozens of implementations is infeasible
» Automated installation, performance experiments can help reproducibility

» Computing graph features and performance models beforehand can facilitate
package selection

UNIVERSITY OF

OREGON 20 /21

O

Future Directions '!;CE'

» Leaderboard of performance results (like Graph500)
» Containerization
Singularity
Docker
Extreme-Scale Scientific Software Stack (E4S) software stack

UNIVERSITY OF

OREGON 21/21

O

-
References | '!Fc!'

[1] Gamblin, T., LeGendre, M., Collette, M. R., Lee, G. L., Moody, A., de Supinski, B. R., and Futral, S.
The spack package manager: bringing order to hpc software chaos.
In Proceedings of the International Conference for High Performance Computing, Networking, Storage and
Analysis (Nov. 2015), SC '15, pp. 40:1-40:12.

[2] Kang, U., Meeder, B., and Faloutsos, C.
Spectral analysis for billion-scale graphs: Discoveries and implementation.
In Advances in Knowledge Discovery and Data Mining (Berlin, 2011), vol. 6635 of Lecture Notes in

Computer Science, Springer.

[3] Lamberson, P. J.
Scale-free network.
Available at http://social-dynamics.org/scale-free-network/.

UNIVERSITY OF

OREGON 5

O

http://social-dynamics.org/scale-free-network/

-
References || '!Fc!'

[4] Pavlopoulos, G. A., Secrier, M., Moschopoulos, C. N., Soldatos, T. G., Kossida, S., Aerts, J., Schneider, R.,
and Bagos, P. G.
Using graph theory to analyze biological networks.
In BioData Mining (Bethesda, MD, 2011), PubMed Central.

[5] Sood, K., Norris, B., and Jessup, E.
Comparative performance modeling of parallel preconditioned krylov methods.
In IEEE 19th International Conference on High Performance Computing and Communications; 15th
International Conference on Smart City; 3rd International Conference on Data Science and Systems (Dec.
2017), HPCC/SmartCity/DSS, pp. 26-33.

UNIVERSITY OF

OREGON 2

O

	Appendix

