
Reproducibility in Parallel Graph Algorithms

Samuel D. Pollard, Sudharshan Srinivasan, and Boyana Norris

Computer and Information Science

SIAM CSE 2019, MS168: Reproducibility in Network Algorithms II
February 26, 2019

Steps to (Compute a Graph Property Quickly) HPCLHPCL

1 Find a package
2 Nail down dependencies
3 Reformat graph input file
4 Learn how to use CLI/API
5 Run gamut of experiments
6 Measure performance of experiments
7 Combine, analyze, and decide
8 Link with existing workflow

2 / 21

Steps to Quickly (Compute a Graph Property Quickly) HPCLHPCL

1 Find a package
2 Nail down dependencies
3 Reformat graph input file
4 Learn how to use CLI/API
5 Run gamut of experiments on my computer
6 Measure performance of such experiments
7 Combine, analyze, and decide
8 Link with existing workflow

3 / 21

Parallel Graph Algorithms HPCLHPCL

I Social network analysis [2]
• Twitter has its own graph processing package (GraphJet), Google has its own

language (Pregel)
I Bioinformatics [4]

• Tend to have more complex analysis of smaller datasets
• non-e.g. Needleman-Wunsch algorithm for global sequence alignment

4 / 21

Workflow HPCLHPCL

5 / 21

Before Reproducibility. . . HPCLHPCL

I Ensure we’re actually
measuring the right
times!

I File read time was
mistakenly used as
performance
measurement

I Abridged log file from GraphMat
• finished file read. time: 2.65211
• load graph: 5.91229 sec
• initialize engine: 8.32081e-05 sec
• run algorithm 1 (count degree): 0.0555639 sec
• run algorithm 2 (compute PageRank): 0.149445 sec
• print output: 0.0641179 sec
• deinitialize engine: 0.00022006 sec

6 / 21

File Formats HPCLHPCL

I Binary can be much faster (factor
of at least 3)
• No parsing, can just store into

array
• Less portable
• May be serialization of internal

data structures
I 0-indexed or 1-indexed?

• May not be interchangeable

this?

55555 44444
44444 22222
11111 66666

or this?

5 4
4 2
1 6

or this?

4 3
3 1
0 5

7 / 21

Differing Results HPCLHPCL

I PageRank stopping criterion
• ||pt − pt−1||1
• ||pt − pt−1||∞
• Stop when no weights change (machine ε)

I Triangle counting
• Count both directions of triangle?
• One, two, or three triangles?

A

B C

8 / 21

Starting (Root) Vertices HPCLHPCL

I Performance of BFS and SSSP
depends on where you start

I More reachable vertices

Root

A

B

C

D

vs.

Root

A

B C

D

9 / 21

Once We Have Reproducibility HPCLHPCL

I Running experiments is expensive
• Read in a 10+GB file just to do

BFS once
• Batched is attractive but requires

per-package modification

NAME ST TIME NODES
epg1t-22 R 12:24:12 1

epg28t-22 R 4:45:20 1
epg32t-22 R 3:15:10 1
epg48t-22 R 2:45:54 1
epg54t-22 R 2:45:54 1
epg56t-22 R 2:45:54 1
epg40t-22 R 2:47:34 1

10 / 21

How Reproducible is Reproducible Enough? HPCLHPCL

[1]

I We want better performance!
• Computer upgrades, new package versions
• All the lovely breaking changes that come along with them

11 / 21

Parameter Tuning HPCLHPCL

I BFS - α and β (direction-optimizing). This is a combination of:
• bottom-up: unvisited nodes searching for visited parents
• top-down: visited nodes searching for unvisited children

I SSSP - ∆-stepping; order nodes using ranges of size ∆ to distribute work

12 / 21

Early Results HPCLHPCL

I Data
structure
construc-
tion time
sometimes
not split ●

●

●

●

GAP GraphMat

1
.0

1
.5

2
.0

2
.5

3
.5

SSSP Data Structure

Construction

T
im

e
 (

s
e

c
o

n
d

s
)

●

●
●
●
●

●

●
●●

GAP GraphBIG GraphMat PowerGraph

0
.1

0
.2

0
.5

1
.0

2
.0

SSSP Time

T
im

e
 (

s
e

c
o

n
d

s
)

Scale = 22

13 / 21

Early Results HPCLHPCL

●

●

●

●

●

●

● ●

1
2

5
1
0

2
0

BFS Speedup

Threads

S
p
e
e
d
u
p

1 2 4 8 16 32 64 72

Scale = 23

●

Linear

GraphBIG

Graph500

GraphMat

GAP

≈ 16 ∗ 223

≈ 135M
edges

14 / 21

Be Careful with Speedup HPCLHPCL

I What if I naïvely wrote serial implementation?
I Graph500 has Serial, OpenMP, and MPI implementations

15 / 21

Recommendation and Ranking HPCLHPCL

I Pick the best graph package for your hardware and graph
1 Compute features of a graph

This may be expensive

2 Train a model based on these features

I Apply work in linear solver recommendations [5] to graph processing packages

16 / 21

Computing Features HPCLHPCL

I We use 12 features (the
ones computed on SNAP)

I e.g. # vertices, # edges,
diameter, clustering
coefficient

Figure: A scale free network has low diameter [3]

17 / 21

Training Models HPCLHPCL

0.0

0.1

0.2

0.3

BFS PR
SSSP TC

R
2

Method

None

Norm

R+N

Ridge

0

20

40

BFS PR
SSSP TC

R
M

S
D

Method

None

Norm

R+N

Ridge

0

1

2

3

BFS PR
SSSP TC

N
R

M
S

D

Method

None

Norm

R+N

Ridge

Linear Regression Results

Algorithm

I Worst
case: BFS
with factor
of 2

I Best case:
TC with
factor of
0.5

18 / 21

Classification HPCLHPCL

(b) Random Forest

TC

good bad
good 43 1
bad 0 118

BFS

good bad
good 110 0
bad 0 147

PR

good bad
good 75 0
bad 1 193

SSSP

good bad
good 51 11
bad 9 198

19 / 21

Conclusion HPCLHPCL

I Manually selecting between dozens of implementations is infeasible
I Automated installation, performance experiments can help reproducibility
I Computing graph features and performance models beforehand can facilitate

package selection

20 / 21

Future Directions HPCLHPCL

I Leaderboard of performance results (like Graph500)
I Containerization

• Singularity
• Docker
• Extreme-Scale Scientific Software Stack (E4S) software stack

21 / 21

References I HPCLHPCL

[1] Gamblin, T., LeGendre, M., Collette, M. R., Lee, G. L., Moody, A., de Supinski, B. R., and Futral, S.
The spack package manager: bringing order to hpc software chaos.
In Proceedings of the International Conference for High Performance Computing, Networking, Storage and
Analysis (Nov. 2015), SC ’15, pp. 40:1–40:12.

[2] Kang, U., Meeder, B., and Faloutsos, C.
Spectral analysis for billion-scale graphs: Discoveries and implementation.
In Advances in Knowledge Discovery and Data Mining (Berlin, 2011), vol. 6635 of Lecture Notes in
Computer Science, Springer.

[3] Lamberson, P. J.
Scale-free network.
Available at http://social-dynamics.org/scale-free-network/.

1 / 2

http://social-dynamics.org/scale-free-network/

References II HPCLHPCL

[4] Pavlopoulos, G. A., Secrier, M., Moschopoulos, C. N., Soldatos, T. G., Kossida, S., Aerts, J., Schneider, R.,
and Bagos, P. G.
Using graph theory to analyze biological networks.
In BioData Mining (Bethesda, MD, 2011), PubMed Central.

[5] Sood, K., Norris, B., and Jessup, E.
Comparative performance modeling of parallel preconditioned krylov methods.
In IEEE 19th International Conference on High Performance Computing and Communications; 15th
International Conference on Smart City; 3rd International Conference on Data Science and Systems (Dec.
2017), HPCC/SmartCity/DSS, pp. 26–33.

2 / 2

	Appendix

