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Floating-Point Arithmetic Is Not Associative HPCLHPCL

I Let ⊕ be floating-point addition
I 0.1⊕ (0.2⊕ 0.3) = 0x1.3333333333334p-1

I (0.1⊕ 0.2)⊕ 0.3 = 0x1.3333333333333p-1

I Worse error when the magnitudes are different
a <- 1.0
b <- 1e16
c <- -1e16
(a + b) + c = 0
a + (b + c) = 1

What is the effect of assuming associativity for parallel summation error?
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Bound on Relative Error HPCLHPCL

I Let op ∈ {+,−,÷,×}, and � be its corresponding floating point operation.
Then

x op y = (x � y)(1+ δ) where |δ| ≤ ε. (1)

I This holds only for x � y 6= 0 and normal (not subnormal)
I For double-precision ε = 2−53
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MPI Reduce HPCLHPCL

I Assume an array A of size n

I Reduce A to a single value with a
binary operation
• Interesting ones are MPI_SUM and
MPI_PROD

I Distribute A across MPI ranks (each
pk)

I Unspecified but typically
deterministic reduction order when
run on the same architecture and
topology
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How many ways are there to do this reduce?

I Depends on how we define acceptable reduction strategy
I We list four families

1 Canonical Left-Associative (Canon)
2 Fixed Order, Random Association (FORA)
3 Random Order, Random Association (RORA)
4 Random Order, Left-Associative (ROLA)
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1. Canonical Left-Associative HPCLHPCL

I Left-associative
I Unambiguous: one reduction

strategy
I No freedom to exploit parallelism

double acc = 0.0;
for (i = 0; i < N; i++) {

acc += A[i];
}
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Parallel Reductions HPCLHPCL

To look at parallelism, we start with the MPI Standard
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The MPI Standard is Flexible HPCLHPCL

The operation op is always assumed to be associative. All predefined opera-
tions are also assumed to be commutative. . . However, the implementation can
take advantage of associativity, or associativity and commutativity, in order
to change the order of evaluation. This may change the result of the reduc-
tion for operations that are not strictly associative and commutative, such as
floating-point addition. [4]
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If Commutativity Is Required HPCLHPCL

The order of operands is fixed and is defined to be in ascending, process rank
order, beginning with process zero. The order of evaluation can be changed,
taking advantage of the associativity of the operation. [4]
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2. Fixed Order, Random Association (FORA) HPCLHPCL

I Let’s start with the commute = false case
I Assume inorder tree traversal
I Combinatorially well-known example of a Catalan number
I Given array of size n,

Cn =
(2n)!

(n + 1)!n!

different combinations.
I We call these associations
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Example Summation HPCLHPCL

I With the
commutative but
nonassociative
operator ⊕, r1 = r2
but r2 6= r3.

r1 = a⊕ (b ⊕ c)

a

b c

r2 = (c ⊕ b)⊕ a

c b

a

r3 = c ⊕ (b ⊕ a)

c

a b
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3. Random Order, Random Association (RORA) HPCLHPCL

I This family describes the default if we call MPI_Reduce
I Greater than Cn

1

I Less well-known, but still solved combinatorial problem [3]

gn = (2n − 3)!!

where !! is the double factorial (in this case on odd integers). That is,
(2n − 3)!! = 1× 3× 5× · · · × 2n − 3.

1 Correction
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4. Random Order, Left Associative (ROLA) HPCLHPCL

I Shuffle array first, then sum canonically
I Main purpose is to compare with previous work by Chapp et al. [2]
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Generating Random Binary Trees HPCLHPCL

I Rémy’s Procedure
I Given a tree with n − 1 leaf nodes,

pick one of the nodes randomly (x)
I Add a new node k one of two ways:

x

. . .

k or k x

. . .
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Absolute Error HPCLHPCL

Let
∑⊕ be floating point sum, SA be the true sum.

Wilkinson back in ’63 proved summation error is bounded by∣∣∣∣∣
⊕ n∑
k=1

Ak − SA

∣∣∣∣∣ ≤ ε(n − 1)
n∑

k=1

|Ak |+ O(ε2). (2)
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Estimating Error HPCLHPCL

From Robertazzi & Schwartz [5] if we assume
1 Ak ∼ U(0, 2µ) or exp(1/µ).
2 Floating point errors are independent, distributed with mean 0, variance σ2

3 Summation ordering is random
Then the relative error is approximately

1
3
µ2n3σ2e . (3)

We’ll substitute values in for (2) and (3) later
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Left and Random Associativity (ROLA vs. RORA) HPCLHPCL

I ROLA is a biased
sum

I worst RORA has
smaller error than
canonical
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Fixed and Random Ordering (FORA vs. RORA) HPCLHPCL

I Almost identical
I Error mainly from

adding small
number to large
partial-sum

I Notice canonical
would be off this
chart 0
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RORA with Different Distributions HPCLHPCL

I U(−1, 1) worst
because of
catastrophic
cancelation
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Empirical Results for Uniform(0,1), Tabulated HPCLHPCL

I bar is average
I Robertazzi Estimator matches

closely with observed data

Distribution Measurement Relative Error

U(0, 1) RORA 6.702× 10−16

U(0, 1) max(RORA) 4.073× 10−15

U(0, 1) ROLA 1.282× 10−14

U(0, 1) Canonical 1.062× 10−14

U(0, 1) Analytical 1.776× 10−8

U(0, 1) Robertazzi 6.848× 10−16

machine ε 1.110× 10−16
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Error Estimators for Uniform (-1,1) HPCLHPCL

I Recap of previous figures;
I Error is greater for U(−1, 1)

Distribution Measurement Relative Error

U(−1, 1) RORA 2.104× 10−14

U(−1, 1) max(RORA) 4.824× 10−14

U(−1, 1) ROLA 8.358× 10−12

U(−1, 1) Canonical 6.124× 10−12

U(−1, 1) Analytical 7.951× 10−7

machine ε 1.110× 10−16
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Nekbone HPCLHPCL

I Nekbone is a
computational fluid
dynamics proxy app

I We look at residual of
conjugate gradient

I We use SimGrid [1] to
try out 16 different
allreduce algorithms
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Nekbone (Cont.) HPCLHPCL

I Only four results
across 16 algorithms

I Most differ only by
the last few bits

Allreduce Algo. Rank Residual

Best (smp_rsag) 1.616 306 278 792 575× 10−8

Default 14.082 603 491 982 575× 10−8

Worst 14.082 603 491 982 647× 10−8

Other 14.082 603 491 982 618× 10−8
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Future Work & Conclusion HPCLHPCL

Future Work
I Generate more realistic reduction trees, realistic random input, expose more

nondeterminism in SimGrid
In Conclusion
I Looked at error for four different families of reduction strategies
I Reduction tree shape has greater effect than how the array is ordered
I Despite large state space, realistic programs generate a tiny subset of what is

permitted

Source and slides at
github.com/sampollard/reduce-error

Thank you!
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