A Statistical Analysis of Error in MPI Reduction Operations

Samuel D. Pollard and Boyana Norris

11 November, 2020

[Overview of Floating-Point Arithmetic](#page-1-0)

[The State Space of MPI Reduction Operations](#page-4-0)

[Analytical Bounds](#page-17-0)

[Empirical Results](#page-20-0)

[Nekbone: A Case Study](#page-26-0)

[Conclusion](#page-29-0)

- \blacktriangleright Let \oplus be floating-point addition
- \triangleright 0.1 \oplus (0.2 \oplus 0.3) = 0x1.333333333333334p-1
- \blacktriangleright $(0.1 \oplus 0.2) \oplus 0.3 = 0 \times 1.333333333333335 1$
- \triangleright Worse error when the magnitudes are different
	- $a \le -1.0$ $b \leq -1e16$ $c < -1e16$ $(a + b) + c = 0$ $a + (b + c) = 1$

UNIVERSITY OF
OREGON

What is the effect of assuming associativity for parallel summation error?

Let
$$
op \in \{+, -, \div, \times\}
$$
, and \odot be its corresponding floating point operation. Then

$$
x \text{ op } y = (x \odot y)(1 + \delta) \text{ where } |\delta| \le \epsilon. \tag{1}
$$

► This holds only for
$$
x \odot y \neq 0
$$
 and normal (not subnormal)

For double-precision $\epsilon = 2^{-53}$

[Overview of Floating-Point Arithmetic](#page-1-0)

[The State Space of MPI Reduction Operations](#page-4-0)

[Analytical Bounds](#page-17-0)

- [Empirical Results](#page-20-0)
- [Nekbone: A Case Study](#page-26-0)

[Conclusion](#page-29-0)

- Assume an array A of size n
- Reduce A to a single value with a binary operation
	- Interesting ones are MPI_SUM and MPI_PROD
- \triangleright Distribute A across MPI ranks (each p_k)
- \blacktriangleright Unspecified but typically deterministic reduction order when run on the same architecture and topology

How many ways are there to do this reduce?

How many ways are there to do this reduce?

- Depends on how we define acceptable reduction strategy
- \blacktriangleright We list four families
	- **1** Canonical Left-Associative (Canon)
	- 2 Fixed Order, Random Association (FORA)
	- 3 Random Order, Random Association (RORA)
	- 4 Random Order, Left-Associative (ROLA)

- \blacktriangleright Left-associative
- \blacktriangleright Unambiguous: one reduction strategy
- \blacktriangleright No freedom to exploit parallelism

double acc = 0.0; **for** (i = 0; i < N; i++) { acc += A[i]; }

To look at parallelism, we start with the MPI Standard

The operation op is always assumed to be associative. All predefined operations are also assumed to be commutative. . . However, the implementation can take advantage of associativity, or associativity and commutativity, in order to change the order of evaluation. This may change the result of the reduction for operations that are not strictly associative and commutative, such as floating-point addition. [\[4\]](#page-31-0)

The order of operands is fixed and is defined to be in ascending, process rank order, beginning with process zero. The order of evaluation can be changed, taking advantage of the associativity of the operation. [\[4\]](#page-31-0)

- \blacktriangleright Let's start with the commute = false case
- **In Assume inorder tree traversal**
- \triangleright Combinatorially well-known example of a Catalan number
- Given array of size n ,

$$
C_n=\frac{(2n)!}{(n+1)!n!}
$$

different combinations.

 \blacktriangleright We call these *associations*

- This family describes the default if we call MPI_Reduce
- **I** Greater than C_n ¹
- Less well-known, but still solved combinatorial problem [\[3\]](#page-31-1)

$$
g_n=(2n-3)!!
$$

where !! is the double factorial (in this case on odd integers). That is, $(2n-3)!! = 1 \times 3 \times 5 \times \cdots \times 2n-3.$

- \blacktriangleright Shuffle array first, then sum canonically
- \triangleright Main purpose is to compare with previous work by Chapp et al. [\[2\]](#page-31-2)

- Rémy's Procedure
- Given a tree with $n 1$ leaf nodes, pick one of the nodes randomly (x)
- \blacktriangleright Add a new node k one of two ways:

[Overview of Floating-Point Arithmetic](#page-1-0)

[The State Space of MPI Reduction Operations](#page-4-0)

[Analytical Bounds](#page-17-0)

- [Empirical Results](#page-20-0)
- [Nekbone: A Case Study](#page-26-0)

[Conclusion](#page-29-0)

HPCL

Let Σ^\oplus be floating point sum, $\mathcal{S}_{\mathcal{A}}$ be the true sum. Wilkinson back in '63 proved summation error is bounded by

$$
\left|\sum_{k=1}^{n} A_k - S_A\right| \leq \epsilon(n-1) \sum_{k=1}^{n} |A_k| + O(\epsilon^2).
$$
 (2)

From Robertazzi & Schwartz [\[5\]](#page-32-0) if we assume

- \blacksquare $A_k \sim U(0, 2\mu)$ or exp $(1/\mu)$.
- $\overline{\textbf{2}}$ Floating point errors are independent, distributed with mean 0, variance σ^2

1 3

3 Summation ordering is random

Then the relative error is approximately

$$
\mu^2 n^3 \sigma_e^2. \tag{3}
$$

We'll substitute values in for [\(2\)](#page-18-0) and [\(3\)](#page-19-0) later

- [Overview of Floating-Point Arithmetic](#page-1-0)
- [The State Space of MPI Reduction Operations](#page-4-0)
- [Analytical Bounds](#page-17-0)
- [Empirical Results](#page-20-0)
- [Nekbone: A Case Study](#page-26-0)
- [Conclusion](#page-29-0)

- \triangleright ROLA is a biased sum
- worst RORA has smaller error than canonical

UNIVERSITY OF
OREGON

21 / 30

Random Ordering With and Without Random Associativity

- I Almost identical
- \blacktriangleright Error mainly from adding small number to large partial-sum
- \blacktriangleright Notice canonical would be off this chart

INIVERSITY OF OREGON

Random Associativity With and Without Random Ordering

[Overview](#page-1-0) [Space of MPI_Reduce](#page-4-0) [Analytical Bounds](#page-17-0) [Empirical](#page-20-0) [Case Study](#page-26-0) [Conclusion](#page-29-0) RORA with Different Distributions

 \blacktriangleright U(-1,1) worst because of catastrophic cancelation

 $n = 50,000, |A| = 2,000,000$

 \blacktriangleright Robertazzi Estimator matches closely with observed data

Error is greater for $U(-1, 1)$

- [Overview of Floating-Point Arithmetic](#page-1-0)
- [The State Space of MPI Reduction Operations](#page-4-0)
- [Analytical Bounds](#page-17-0)
- [Empirical Results](#page-20-0)
- [Nekbone: A Case Study](#page-26-0)

[Conclusion](#page-29-0)

- Nekbone is a computational fluid dynamics proxy app
- \blacktriangleright We look at residual of conjugate gradient
- \blacktriangleright We use SimGrid [\[1\]](#page-31-3) to try out 16 different allreduce algorithms

OREGON

Unique Results for Nekbone on a 72-node Fat Tree Cluster

÷,

٠

 \blacktriangleright Most differ only by the last few bits

- [Overview of Floating-Point Arithmetic](#page-1-0)
- [The State Space of MPI Reduction Operations](#page-4-0)
- [Analytical Bounds](#page-17-0)
- [Empirical Results](#page-20-0)
- [Nekbone: A Case Study](#page-26-0)

[Conclusion](#page-29-0)

Future Work

 \triangleright Generate more realistic reduction trees, realistic random input, expose more nondeterminism in SimGrid

In Conclusion

- \blacktriangleright Looked at error for four different families of reduction strategies
- Reduction tree shape has greater effect than how the array is ordered
- \triangleright Despite large state space, realistic programs generate a tiny subset of what is permitted

Source and slides at <github.com/sampollard/reduce-error>

Thank you!

References I

- [1] Casanova, H., Giersch, A., Legrand, A., Quinson, M., and Suter, F. Versatile, scalable, and accurate simulation of distributed applications and platforms. Journal of Parallel and Distributed Computing 74, 10 (June 2014), 2899–2917.
- [2] Chapp, D., Johnston, T., and Taufer, M.

On the need for reproducible numerical accuracy through intelligent runtime selection of reduction algorithms at the extreme scale.

In IEEE International Conference on Cluster Computing (Chicago, IL, USA, Sept. 2015), IEEE, pp. 166–175.

[3] Dale, M., and Moon, J.

The permuted analogues of three catalan sets.

Journal of statistical planning and inference 34, 1 (Jan. 1993), 75–87.

[4] Message Passing Interface Forum. MPI: A message-passing interface standard: Version 3.1. Tech. rep., MPI Forum, Knoxville, TN, United States, 2015.

References II

[5] Robertazzi, T. G., and Schwartz, S. C. Best "ordering" for floating-point addition. Transactions on Mathematical Software 14, 1 (Mar. 1988), 101–110.

