A Statistical Analysis of Error in MPI Reduction Operations

Samuel D. Pollard and Boyana Norris

11 November, 2020

Overview ●00			
			HPCL

1 Overview of Floating-Point Arithmetic

2 The State Space of MPI Reduction Operations

3 Analytical Bounds

4 Empirical Results

5 Nekbone: A Case Study

6 Conclusion

Overview	Space of MPI_Reduce	Analytical Bounds	Empirical	Case Study	Conclusion
0●0		000	000000	000	00
Floating	-Point Arithmetic I	s Not Associativ	/e		HPCL

- \blacktriangleright Let \oplus be floating-point addition
- ▶ $0.1 \oplus (0.2 \oplus 0.3) = 0x1.3333333333334p-1$
- ▶ $(0.1 \oplus 0.2) \oplus 0.3 = 0x1.3333333333333333-1$
- ▶ Worse error when the magnitudes are different
 - a <- 1.0 b <- 1e16 c <- -1e16 (a + b) + c = 0a + (b + c) = 1

UNIVERSITY OF

What is the effect of assuming associativity for parallel summation error?

Overview 00●			
Bound o	on Relative Error		HPCL

• Let
$$op \in \{+, -, \div, \times\}$$
, and \odot be its corresponding floating point operation. Then

$$x \text{ op } y = (x \odot y)(1 + \delta) \text{ where } |\delta| \le \epsilon.$$
 (1)

Space of MPI_Reduce ●೦೦೦೦೦೦೦೦೦೦	Analytical Bounds	Empirical 000000	Case Study 000	Conclusion
				HPCL

1 Overview of Floating-Point Arithmetic

2 The State Space of MPI Reduction Operations

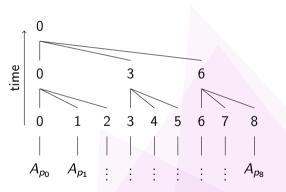
3 Analytical Bounds

- 4 Empirical Results
- 5 Nekbone: A Case Study

6 Conclusion

Overview	Space of MPI_Reduce	Analytical Bounds	Empirical	Case Study	Conclusion
000	⊙●○○○○○○○○○	000	000000	000	00
MPI Re	duce				HPCL

- ▶ Assume an array A of size n
- Reduce A to a single value with a binary operation
 - Interesting ones are MPI_SUM and MPI_PROD
- Distribute A across MPI ranks (each p_k)
- Unspecified but typically deterministic reduction order when run on the same architecture and topology



Overview 000	Space of MPI_Reduce ○○●○○○○○○○○		

How many ways are there to do this reduce?

Overview 000	Space of MPI_Reduce ○○●○○○○○○○○		

How many ways are there to do this reduce?

- Depends on how we define acceptable reduction strategy
- ► We list four families
 - **1** Canonical Left-Associative (Canon)
 - 2 Fixed Order, Random Association (FORA)
 - **3** Random Order, Random Association (RORA)
 - 4 Random Order, Left-Associative (ROLA)

Overview 000	Space of MPI_Reduce ○○○●○○○○○○○	Analytical Bounds	Empirical 000000	Case Study 000	Conclusion 00
1 Cano	nical Left-Associati				HPCL

anonical Lett-Associative

- ▶ Left-associative
- ► Unambiguous: one reduction strategy
- ► No freedom to exploit parallelism

```
double acc = 0.0;
for (i = 0; i < N; i++) {
   acc += A[i];
```


Overview	Space of MPI_Reduce	Analytical Bounds	Empirical	Case Study	Conclusion
000	○○○○●○○○○○○	000	000000	000	
Parallel I	Reductions				HPCL

To look at parallelism, we start with the MPI Standard

 Overview
 Space of MPI_Reduce
 Analytical Bounds
 Empirical occoord
 Case Study occ
 Conclusion occ

 Other MPI Standard is Flexible
 Image: Standard is Flexible
 Image: Standard is Flexible
 Image: Standard is Flexible
 Image: Standard is Flexible

The operation op is always assumed to be associative. All predefined operations are also assumed to be commutative... However, the implementation can take advantage of associativity, or associativity and commutativity, in order to change the order of evaluation. This may change the result of the reduction for operations that are not strictly associative and commutative, such as floating-point addition. [4]

Overview	Space of MPI_Reduce	Analytical Bounds	Empirical	Case Study	Conclusion
000	oooooo●oooooo	000	000000	000	00
lf Comm	nutativity Is Require	ed			HPCL

The order of operands is fixed and is defined to be in ascending, process rank order, beginning with process zero. The order of evaluation can be changed, taking advantage of the associativity of the operation. [4]

Overview 000	Space of MPI_Reduce ○○○○○○●○○○○			
2. Fixed C) rder, Random A	ssociation (FOR	A)	HPCL

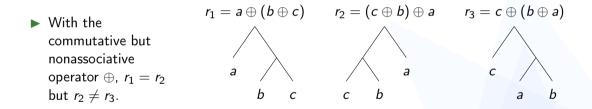
- Let's start with the commute = false case
- Assume inorder tree traversal
- ▶ Combinatorially well-known example of a Catalan number
- Given array of size n,

$$C_n=\frac{(2n)!}{(n+1)!n!}$$

different combinations.

▶ We call these *associations*

Overview	Space of MPI_Reduce	Analytical Bounds	Empirical	Case Study	Conclusion
000	○○○○○○○○○○○		000000	000	00
Example	e Summation				HPCL



Overview 000	Space of MPI_Reduce ○○○○○○○○●○○			
3. Random	n Order, Random	Association (R	ORA)	HPCL

- ► This family describes the default if we call MPI_Reduce
- Greater than C_n^1
- Less well-known, but still solved combinatorial problem [3]

$$g_n=(2n-3)!!$$

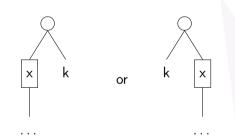
where !! is the double factorial (in this case on odd integers). That is, $(2n-3)!! = 1 \times 3 \times 5 \times \cdots \times 2n-3$.

	Space of MPI_Reduce ○○○○○○○○○			
4 Random	Order Left Ass	ociative (ROLA))	HPCL

- ► Shuffle array first, then sum canonically
- ▶ Main purpose is to compare with previous work by Chapp et al. [2]

Overview 000	Space of MPI_Reduce 0000000000●	Analytical Bounds 000	Empirical 000000	Case Study 000	Conclusion
Generati	ng Random Binary	Trees			HPCL

- ► Rémy's Procedure
- ▶ Given a tree with n − 1 leaf nodes, pick one of the nodes randomly (x)
- ▶ Add a new node *k* one of two ways:



Overview 000	Analytical Bounds ●00		Conclusion 00
			HPCL

- **1** Overview of Floating-Point Arithmetic
- 2 The State Space of MPI Reduction Operations
- 3 Analytical Bounds
- 4 Empirical Results
- 5 Nekbone: A Case Study
- 6 Conclusion

Overview	Space of MPI_Reduce	Analytical Bounds	Empirical	Case Study	Conclusion
000	000000000000	○●○	000000	000	00
Absolute	e Error				HPCL

Let \sum^{\oplus} be floating point sum, S_A be the true sum. Wilkinson back in '63 proved summation error is bounded by

$$\left|\sum_{k=1}^{\oplus n} A_k - S_A\right| \le \epsilon (n-1) \sum_{k=1}^n |A_k| + O(\epsilon^2).$$
(2)

Overview	Space of MPI_Reduce	Analytical Bounds	Empirical	Case Study	Conclusion
000	00000000000000	00●	000000	000	00
Estimati	ing Error				HPCL

From Robertazzi & Schwartz [5] if we assume

- **1** $A_k \sim U(0, 2\mu)$ or $\exp(1/\mu)$.
- 2 Floating point errors are independent, distributed with mean 0, variance σ^2

 $\frac{1}{3}$

3 Summation ordering is random

Then the relative error is approximately

$$\mu^2 n^3 \sigma_e^2. \tag{3}$$

We'll substitute values in for (2) and (3) later

Overview 000		Empirical ●00000	

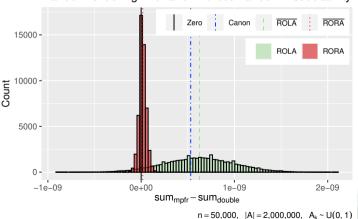
- **1** Overview of Floating-Point Arithmetic
- 2 The State Space of MPI Reduction Operations
- 3 Analytical Bounds
- 4 Empirical Results
- 5 Nekbone: A Case Study
- 6 Conclusion

Overview Space of MPI Reduce Analytical Bounds Empirical Case Study Conclusion 000

Left and Random Associativity (ROLA vs. RORA)

- ROLA is a biased sum
- worst RORA has smaller error than canonical

UNIVERSITY OF



Random Ordering With and Without Random Associativity

21/30

Overview 000			Empirical ○○●○○○	
Eived an	d Pandam Ordarin	$(E \cap D \land v_{C} D)$		HDCL

Fixed and Random Ordering (FORA vs. RORA)

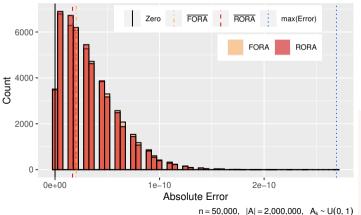
Almost identical

- Error mainly from adding small number to large partial-sum
- Notice canonical would be off this chart

UNIVERSITY OF

OREGON

Random Associativity With and Without Random Ordering



RORA with Different Distributions

25000 -

U(-1000, 1000) U(0, 1) U(-1, 1)20000 -15000 -Count 10000 -

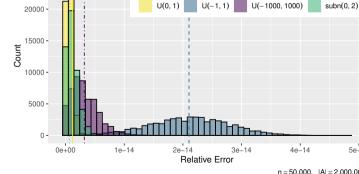
RORA Summation Error for Different Distributions

 \blacktriangleright U(-1, 1) worst because of catastrophic cancelation

n = 50.000. |A| = 2.000.000

U(0,1) U(-1,1) U(-1000,1000) subn

5e-14



Overview	Space of MPI_Reduce	Analytical Bounds	Empirical	Case Study	Conclusion
000	000000000000000000000000000000000000	000	0000●0	000	00
Empirica	I Results for Unifo	rm(0,1), Tabulat	ted		HPCL

-

bar is average		bar	is	average
----------------	--	-----	----	---------

 Robertazzi Estimator matches closely with observed data

Distribution	Measurement	Relative Error
U(0,1) U(0,1)	RORA max(RORA)	$6.702 imes 10^{-16} \ 4.073 imes 10^{-15}$
U(0,1)	ROLA	$1.282 imes 10^{-14}$
U(0, 1) U(0, 1)	Canonical Analytical	$1.062 imes 10^{-14}\ 1.776 imes 10^{-8}$
U(0,1)	Robertazzi	6.848×10^{-16}
	machine ϵ	1.110×10^{-16}

Overview 000	Space of MPI_Reduce	Analytical Bounds	Empirical 00000●	Case Study 000	Conclusion
Error Es	timators for Unifor	m (-1,1)			HPCL

Recap of previous figures;	

• Error is greater for
$$U(-1,1)$$

Distribution	Measurement	Relative Error
$egin{array}{c} U(-1,1) \ U(-1,1) \ U(-1,1) \ U(-1,1) \end{array}$	RORA max(RORA) ROLA	$ \begin{vmatrix} 2.104 \times 10^{-14} \\ 4.824 \times 10^{-14} \\ 8.358 \times 10^{-12} \end{vmatrix} $
$egin{array}{l} {\sf U}(-1,1) \ {\sf U}(-1,1) \end{array}$	Canonical Analytical	$6.124 imes 10^{-12} \ 7.951 imes 10^{-7}$
- () -)	machine ϵ	1.110×10^{-16}

Overview 000		Case Study ●○○	
			HPCL

- **1** Overview of Floating-Point Arithmetic
- 2 The State Space of MPI Reduction Operations
- 3 Analytical Bounds
- 4 Empirical Results
- 5 Nekbone: A Case Study

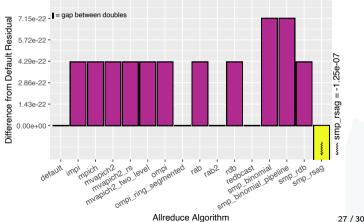
6 Conclusion

Overview 000	Space of MPI_Reduce	Analytical Bounds	Empirical 000000	Case Study ○●○	Conclusion 00
Nekbone					HPCL

Unique Results for Nekbone on a 72-node Fat Tree Cluster

- Nekbone is a computational fluid dynamics proxy app
- ▶ We look at residual of conjugate gradient
- ▶ We use SimGrid [1] to try out 16 different allreduce algorithms

UNIVERSITY OF OREGON



Overview 000	Space of MPI_Reduce	Analytical Bounds	Empirical 000000	Case Study ○○●	Conclusion
Nekbone	e (Cont.)				HPCL

Only four results
across 16 algorithms

 Most differ only by the last few bits

Allreduce Algo. Rank	Residual
Best (smp_rsag)	$1.616306278792575 imes10^{-8}$
Default	$14.082603491982575 imes10^{-8}$
Worst	$14.082603491982647 imes10^{-8}$
Other	$14.082603491982618 imes 10^{-8}$

Overview 000			Conclusion ●○
			HPCL

- **1** Overview of Floating-Point Arithmetic
- 2 The State Space of MPI Reduction Operations
- 3 Analytical Bounds
- 4 Empirical Results
- 5 Nekbone: A Case Study

6 Conclusion

Overview 000	Space of MPI_Reduce	Analytical Bounds	Empirical 000000	Case Study 000	Conclusion ○●
Future V	Vork & Conclusion				HPCL

Future Work

 Generate more realistic reduction trees, realistic random input, expose more nondeterminism in SimGrid

In Conclusion

- ▶ Looked at error for four different families of reduction strategies
- Reduction tree shape has greater effect than how the array is ordered
- Despite large state space, realistic programs generate a tiny subset of what is permitted

Source and slides at github.com/sampollard/reduce-error

Thank you!

References I

- Casanova, H., Giersch, A., Legrand, A., Quinson, M., and Suter, F. Versatile, scalable, and accurate simulation of distributed applications and platforms. *Journal of Parallel and Distributed Computing* 74, 10 (June 2014), 2899–2917.
- [2] Chapp, D., Johnston, T., and Taufer, M.

On the need for reproducible numerical accuracy through intelligent runtime selection of reduction algorithms at the extreme scale.

In IEEE International Conference on Cluster Computing (Chicago, IL, USA, Sept. 2015), IEEE, pp. 166–175.

[3] Dale, M., and Moon, J.

The permuted analogues of three catalan sets. Journal of statistical planning and inference 34, 1 (Jan. 1993), 75–87.

[4] Message Passing Interface Forum.
 MPI: A message-passing interface standard: Version 3.1.
 Tech. rep., MPI Forum, Knoxville, TN, United States, 2015.

References II

...

 [5] Robertazzi, T. G., and Schwartz, S. C. Best "ordering" for floating-point addition. *Transactions on Mathematical Software 14*, 1 (Mar. 1988), 101–110.

