
A Statistical Analysis of Error in MPI Reduction
Operations

Samuel D. Pollard
Computer and Information Science

University of Oregon
Eugene, OR

Email: spollard@cs.uoregon.edu

Boyana Norris
Computer and Information Science

University of Oregon
Eugene, OR

Abstract—This work explores the effects of nonassociativity
of floating-point addition on Message Passing Interface (MPI)
reduction operations. Previous work indicates floating-point sum-
mation error is comprised of two independent factors: error
based on the summation algorithm and error based on the
summands themselves. We find evidence to suggest, for MPI
reductions, the error based on summands has a much greater
effect than the error based on the summation algorithm. We
begin by sampling from the state space of all possible summa-
tion orders for MPI reduction algorithms. Next, we show the
effect of different random number distributions on summation
error, taking a 1000-digit precision floating-point accumulator
as ground truth. Our results show empirical error bounds
that are much tighter than existing analytical bounds. Last, we
simulate different allreduce algorithms on the high performance
computing (HPC) proxy application Nekbone and find that
the error is relatively stable across algorithms. Our approach
provides HPC application developers with more realistic error
bounds of MPI reduction operations. Quantifying the small—but
nonzero—discrepancies between reduction algorithms can help
developers ensure correctness and aid reproducibility across MPI
implementations and cluster topologies.

Index Terms—Floating-point arithmetic, message passing in-
terface, parallel programming, reduction tree, roundoff error,
summation order.

I. INTRODUCTION

Message Passing Interface (MPI) [5] is the industry standard
for distributed, high performance computing (HPC) applica-
tions. With MPI, collective operations assume an associa-
tive operator; however, floating-point arithmetic is in general
nonassociative. This creates a predicament: on one hand, the
nondeterminism of parallel operations is a cornerstone of the
scalability of parallel computations. On the other hand, bitwise
reproducibility is much more difficult to preserve if nonde-
terministic operation ordering is permitted with floating-point
operations. To make matters worse, some small discrepancies
are acceptable in many computational models, such as iterative
solvers for linear systems [26]. Thus, the need for rigorous
analysis of nonassociativity in HPC applications is twofold:
both to ensure reproducibility where needed and to determine
when these errors are spurious.

With the flexibility of the MPI standard, results are not
guaranteed to be the same across different network topologies
or even across different numbers of processes [28]. But we
must not paint too pessimistic of a picture. In reality, the

hard work of MPI developers has resulted in overall stable
algorithms, and popular implementations such as OpenMPI
and MPICH evaluate to the same result when the function is
applied to the same arguments appearing in the same order [2].
However, this order is not necessarily canonical and so may
differ from the serial semantics developers might expect.

A. Hypothesis

Our original hypothesis for this work was the following:
selecting between different reduction schemes and reduction
algorithms will cause a significant change in accuracy. Our
first case studies indicate the opposite—reduction algorithms
have little or no effect on the final result. Instead, the dynamic
range of the summands is much more significant. We predict
this is true because MPI reduction algorithms by nature
strive to create a balanced reduction tree for efficiency. As
formulated by Espelid [10], summation error (and in turn, MPI
reduction error) consists of two independent parts: the initial
error (based on the range of the inputs) and the algorithm
error. Though there exist pathological orderings in any case
to give huge algorithm errors, the optimal way to minimize
summation error is to minimize the magnitudes of intermediate
sums [10]. For many inputs, this goal is supplementary to
creating balanced reduction trees.

B. Contributions

Our work analyzes error of MPI reduction algorithms sev-
eral different ways. In this work, we:

∙ generate samples from every possible reduction strategy
permitted by the MPI standard (Section II);

∙ calculate previously-established analytical bounds and
probabilistic estimators as they apply to some sample
input probability distributions (Section III);

∙ show experimental results for different probability distri-
butions and summation algorithms as they relate to the
MPI standard (Section IV);

∙ investigate the correlation between reduction tree height
and summation error (Section IV-C); and

∙ consider the effect allreduce algorithms have on the
accuracy of the proxy application Nekbone (Section V).

r1 = a ⊕ (b ⊕ c)

a
b c

r2 = (c ⊕ b)⊕ a

c b
a

r3 = c ⊕ (b ⊕ a)

c
a b

Fig. 1. With the commutative but nonassociative operator ⊕, r1 = r2 but
r2 ≠ r3.

II. STATE SPACE OF MPI REDUCTION OPERATIONS

The goal of our work is to explore the implications of as-
suming associativity of floating-point operations with respect
to MPI reduction operations. We first explain the concepts
behind MPI reduction algorithms, then describe the state space
of different ways these reductions can be performed.

A. Reduction Operations
Conceptually, an MPI reduction operation works by repeat-

edly applying a binary operation to a given input, thereby
reducing its size and returning an accumulated value. More
concretely, one use of MPI_Reduce is to compute the sum of
all elements of an array in parallel, and transmit the sum to a
single process.

A reduction operation is typically parameterized by its
associativity. For a one-dimensional array, the natural choices
are left or right-associative. Imperative, serial implementations
typically imply left-associativity since that matches C and For-
tran specifications for + and * and is strongly idiomatic. Recall
that floating-point addition and multiplication are commutative
but nonassociative operations. With MPI there is no fixed
associativity, so many results are permitted for an operation
such as MPI_Reduce.
This paper focuses on floating-point addition. By assuming

associativity and commutativity, MPI’s definition of a reduc-
tion operation permits many different ways to reduce an array
of values. For example, Fig. 1 gives three different ways to
reduce a three-element array. Each reduction strategy forms a
reduction tree.

Previous work used randomly shuffled arrays to check
floating-point summation error empirically [4]. We expand
this method by also randomizing the reduction tree. While
selecting summation order and associativity is not a new
idea [14], we provide more results as they specifically relate
to MPI. The state space we describe is all possible reduction
trees and could also be applied to other parallel programming
paradigms. Next, we analyze the possible state space of how
collective operations can be performed.

B. Quantifying the State Space of Possible Reductions
The MPI 3.1 standard [22] has the following description:
The operation op is always assumed to be associa-
tive. All predefined operations are also assumed to
be commutative. . . However, the implementation can
take advantage of associativity, or associativity and

commutativity, in order to change the order of eval-
uation. This may change the result of the reduction
for operations that are not strictly associative and
commutative, such as floating-point addition.

For custom operations, the issue is similar:

If commute = false, then the order of operands
is fixed and is defined to be in ascending, process
rank order, beginning with process zero. The order of
evaluation can be changed, taking advantage of the
associativity of the operation. If commute = true
then the order of evaluation can be changed, taking
advantage of commutativity and associativity.

A rank in MPI terminology refers to one MPI process.
Characterizing these two descriptions gives us two different
families of possible results for a reduction operation. We
compare these two families with the most straightforward
serial implementation as well as previous work.
Throughout, we assume a one-dimensional array A of

floating-point values of length n. We use Ak to denote array
access with k ∈ {1, 2,… , n}. Henceforth, we refer to the
combination of permuting A along with a particular reduction
tree as a reduction strategy of A.
We point out a slight clarification of our use of random

throughout this paper. In reality, in reduction algorithms the
order or associativity is not random but unspecified. We
say random simply for notational consistency; in Section IV
we generate random reduction strageties according to these
families.
Now we present four families of reduction algorithms: two

described by the MPI standard and two others.

1) Canonical. This is left-associative and defines a single
possible reduction order.

2) FORA (Fixed Order, Random Association). This repre-
sents the case when commute = false. The operations
may be parenthesized, but the order is unchanged. For
example, in Fig. 1, r1 is an acceptable sum but r2 and
r3 are not. This is a well-known combinatorial problem
and there are Cn possible ways to parenthesize n values,
where

Cn =
(2n)!

(n + 1)!n!

is the nth Catalan number [19, §7.2]. Each parenthesiza-
tion corresponds to a binary tree, but for convenience we
call these associations.

3) RORA (Random Order, Random Association). This is
the default behavior when using MPI_Reduce. Opera-
tions may be reordered assuming both commutativity and
associativity. Counting the possible number of different
equivalent reduction trees is a less well-known, but still
solved, combinatorial problem [6]. At first glance, this
would appear to have Cn different reductions for each of
the n! possible permutations of A. However, because of
commutativity, many of these reduce to the same answer.

Let gn be the number of possible different reduction trees.
As it turns out,

gn = (2n − 3)!! (1)

where !! is the double factorial (in this case on odd
integers). That is, (2n − 3)!! = 1 × 3 × 5 ×⋯ × 2n − 3.

4) ROLA (Random Order, Left Associative). This is not
precisely described as part of the MPI standard but is used
in previous work [4] and could still arise for algorithms
where the array’s order is nondeterministic, but reduction
is still done in canonical order. Here, the array may be
shuffled but the reduction is left-associative. There are
n!∕2 different possible orderings. To see this, note there
are n! permutations, and by commutativity only the first
two elements can be rearranged; the rest are fixed by left-
associativity.

For the last three cases the growth rate of the number of
possible reduction orders is exponential; exhaustively checking
results is infeasible which is why we generate reduction
strategies randomly. Comparing the last three cases, we have

Cn <
n!
2
< gn (2)

for n > 4.
We discuss further these four cases and how they relate

to the MPI standard. By the pigeonhole principle1, ROLA
cannot generate every possible value permitted in RORA.
For example, (bd)(ac) can be constructed via RORA but not
via ROLA because we cannot convert every left-associative
reduction tree into a balanced binary tree without associativity.

To reiterate, case 1) is canonical, case 2) (FORA) is pre-
cisely the possible state space for custom MPI operations when
commute = false, and case 3) (RORA) is the state space for
the default MPI case. For comparison to previous work, we
include the case 4) (ROLA) in the subsequent analysis.

C. Generating Samples

We begin by generating random binary trees—because
every possible association of a sequence of nonassociative
binary operations can be described by a binary tree. Thus,
when performing a reduction on n elements, we wish to sample
from the space of every binary tree with n leaves. To do this
we use Algorithm R (Rémy’s procedure) [19].

For the FORA case, we generate a random binary tree. For
the RORA case, we first shuffle the array, then generate a
random binary tree by which to sum the array. For the ROLA
case, we shuffle the array, then accumulate in a left-associative
manner. Some examples of random reduction trees are given
in Fig. 1.

1There are gn distinct values for ROLA and n!∕2 for RORA. Since n!∕2 <
gn, there must be at least one reduction strategy that occurs in ROLA but not
in RORA.

tim
e

0

0

0

Ap0

1

Ap1

2

⋮

3

3

⋮

4

⋮

5

⋮

6

6

⋮

7

⋮

8

Ap8

Fig. 2. One possible reduction algorithm. The array A is split up across 9
MPI Ranks. Each pi indicates contiguous chunks of A. The final result is
obtained by sending partial sums “up” the tree.

D. The Nondeterminism of Reduction Algorithms

We describe the entire state space of possible reduction
strategies, but realistically, not every reduction strategy will
occur for a given topology and reduction algorithm. For more
sophisticated reduction algorithms such as Rabenseifner’s al-
gorithm [27], it is not clear how to limit the state space.
In addition, it is not immediately obvious where nondeter-

minism, given a particular algorithm, can arise. We show an
example in Fig. 2 for visualization. In this case, nondeter-
minism can arise either from messages arriving in different
order for the intermediate sums, or the array being distributed
differently according to topology. Depending on the internal
algorithm of the reduction, one may then be in any of the
four cases. Another place for nondeterminism is in how the
array is distributed across nodes. For topology-aware reduction
algorithms, it may be the case that nodes are not in canonical
order in the reduction tree, which is permitted by the MPI
standard.
Finally, notice that within a rank, the values will probably

be reduced in the most straightforward way—left-associative.
We do not assume this, but can easily model it by using an
array whose size is equal to the number of nodes and whose
elements are the partial sums within a rank.

E. Generating Random Floating-Point Values

In most cases, we use the Marsaglia-Multicarry [21] pseu-
dorandom number generator to generate uniform distributions
with a fixed seed across experiments. We denote a uniform
distribution over the half-open interval [a, b) as U(a, b).
Uniform random number generators for floating-point values

typically generate an integer in some range [0, K), then divide
by K to get a value in [0, 1). However, if K < 21022 then
it is impossible to generate every floating-point value in
[0, 1). Notably, no subnormal numbers (for double precision,
numbers in [0, 2−1022)) are generated. We alleviate this by
generating a special distribution which we call subn. The
process for generating these is simple: generate 62 random
bits, then clear the highest two. This ensures the exponent is
in the range [−1023, 0] and so every floating-point value in
[0, 2) can be generated. Sampling from this distribution gives

an expected value of 0.00282 and looks roughly exponentially
distributed, with rate parameter � ≈ 1∕0.00282 ≈ 354.

III. ANALYTICAL ERROR BOUNDS AND ESTIMATORS

Analytical error of floating-point summation in the general
case can be pessimistic. We wish to see how pessimistic. First,
we introduce some helpful notation. Let � be machine epsilon,
or the upper bound on relative rounding error from a floating-
point operation. That is, for some real operator op and its
corresponding floating-point operator ⊙,

x op y = (x ⊙ y)(1 + �) and |�| ≤ �. (3)

For our experiments, we use IEEE-754 binary64 format so
� = 2−53. We focus on floating point addition, notated as ⊕
to distinguish from real number addition. We put ⊕ above
the summation symbol to denote floating-point sum with an
unspecified reduction strategy like so:

∑⊕.
One last bit of notation: let SA be the true value of the

sum of every element of A. A well established result by
Wilkinson [31] bounds the absolute error of floating-point
summation as:

|

|

|

|

|

|

⊕ n
∑

k=1
Ak − SA

|

|

|

|

|

|

≤ �(n − 1)
n
∑

k=1
|Ak| + O(�2). (4)

This bound can be refined with some assumptions. Existing
statistical analysis by Robertazzi and Schwartz [23] derives
expected estimators of the relative error of floating point
summation in special cases. If you assume
1) The values are positive and either uniformly or exponen-

tially distributed (for all k, Ak ∼ U(0, 2�) or exp(1∕�));
2) floating-point addition errors are independent, distributed

with mean 0 and variance �2e ; and
3) the summation ordering is random;

then the relative error is approximated by
1
3
�2n3�2e . (5)

Assuming (3) holds and summation error is uniformly
distributed in [−�∕2, �∕2] yields

�2e = 1
12
�2. (6)

These equations are not particularly useful in isolation, but
we use this estimator to verify our empirical results in the
following section.

IV. EMPIRICAL RESULTS

We compare the reduction strategies in Section II for
reduction along with some baselines. We list how each is
generated here:
i) Canonical (left-associative). The code is essentially

s=0.0; for(k=0;k<n;k++) s+=A[k]; for IEEE-754
double precision.

ii) FORA (Fixed Order, Random Association). Generates
case 2) reduction strategies. This is done by generating a

0

5000

10000

15000

−1e−09 0e+00 1e−09 2e−09
summpfr − sumdouble

C
o

u
n

t

Zero Canon ROLA RORA

ROLA RORA

Random Ordering With and Without Random Associativity

n = 50,000, |A| = 2,000,000, Ak ~ U(0, 1)

Fig. 3. On average, left-associative summation results in a larger error than
random associativity. Left-associative, in MPI terms, would be a canonical
ordering. A bar indicates the arithmetic mean of all samples.

random reduction tree but leaving the array in its original
order.

iii) RORA (Random Order, Random Association). Generates
case 3). This is done by shuffling the array, then gener-
ating a random reduction tree and reducing over that.

iv) ROLA (Random Order, Left Associative). This is done
by shuffling the array, then reducing left-associative. This
is for comparison with previous work [4].

v) MPFR. We use the Multiple Precision Floating-Point Re-
liable (MPFR) library by taking the randomly-generated
double-precision numbers as exact then convert to 1,000-
digit (3,324-bit) MPFR floats [13] and reduce using
MPFR’s correctly-rounded operations in left-associative
order. We use this as the ground truth.

Using 3,324 bits for MPFR may seem excessive, but a
proposal by Kulisch describes a 4,288-bit accumulator to
compute exact dot products for double-precision floats [20].
Multiplication requires more bits to account for the product of
very large and very near-zero values, so for summations 3,324
digits are sufficient.

A. Distribution of Summation Errors
In Figures 3, 4, and 5 we present a set of histograms showing

the error of different MPI reduction schemes. All of these are
histograms with a sample size of 50,000, but the x-axes are
different measurements of error.
In Fig. 3, we compare not the absolute or relative error, but

simply the difference between the true value (summpfr) and the
computed value (sumdouble). We see here that random ordering
and random association, on average, provides a far tighter error
bound compared to enforcing left-associativity. Not only that,
but enforcing left-associativity on a shuffled array (ROLA)
underestimates the true sum. Higham and Mary show this is
expected: as the partial sums get sufficiently large, adding a
small positive number will not change the sum; notationally,
for sufficiently large S and small x, S ⊕ x = S [16]. Other
distributions have similar behavior, where ROLA gives a more

0

2000

4000

6000

0e+00 1e−10 2e−10

Absolute Error

C
o

u
n

t

Zero FORA RORA max(Error)

FORA RORA

Random Associativity With and Without Random Ordering

n = 50,000, |A| = 2,000,000, Ak ~ U(0, 1)

Fig. 4. Here we see shuffling the array has little effect on the summation
error. The number of bins was chosen to be exactly the number of unique
different values. The apparent missing values is not an artifact of plotting but
rather floating-point values which occurred infrequently (or just once).

biased sum compared to RORA. This provides evidence that
MPI reduction error may not be as severe as indicated in the
work of Chapp et al [4]. For tabulation of the vertical lines in
Fig. 3, see Table I.

Looking at Fig. 3, we can also compare our refinement of
different floating-point summation. The similarity of ROLA
(case iv, used by Chapp et al.) and RORA (case iii, everything
permitted by the MPI standard). The smaller error of RORA
indicates MPI summation can be quite robust if the inputs are
randomly distributed similar to our approach.

We compare the distributions for FORA and RORA sepa-
rately in Fig. 4 because they look similar. This indicates that
the order in which elements are added has a smaller effect
compared to the associativity. This makes sense in the context
of our random number generation: previous work indicates
summation error is dependent on the magnitudes of the
intermediate sums [31]. Randomly shuffling the array would
not affect the magnitude of intermediate sums much since the
summands are independently and identically distributed (iid).
Further research is needed to determine whether this holds for
input which is not iid.

We point out some interesting things about Fig. 5. For one,
the greatest relative error among everything we sampled is
with the U(−1, 1) distribution. One possible explanation is
that numbers close together have a higher chance of having
large cancellation; this is the classic example of floating-point
nonassociativity. That is, if x ≈ y then x⊖ y is close to zero.
Then, if for another intermediate summand z ≫ (x⊖ y) more
error is exposed when computing z ⊕ (x ⊖ y).

We tabulate some important values (displayed as vertical
lines in Figs. 4, 5, and 3) alongside their analytical relative
error bounds in Table I.

B. Comparing Empirical and Analytical Bounds
We calculate the “Robertazzi” row in Table I by substituting

our experimental values into (5) and (6). Hence, for U(0, 1)

0

5000

10000

15000

20000

25000

0e+00 1e−14 2e−14 3e−14 4e−14 5e−14

Relative Error

C
o
u
n
t

U(0,1) U(−1,1) U(−1000,1000) subn

U(0, 1) U(− 1, 1) U(− 1000, 1000) subn(0, 2)

RORA Summation Error for Different Distributions

n = 50,000, |A| = 2,000,000

Fig. 5. We notice a wide variation of errors between different distributions
with U(−1, 1) having the largest average relative error. We measure relative
error as |sumdouble − summpfr|∕summpfr.

and n = 2 × 106,
1
3
(0.5)2(2 × 106)3

(1
12
�2
)

≈ 6.848 × 10−16.

This estimator is very close to our observed results (See
U (0, 1) RORA in Table I), but Robertazzi’s work only applies
for summation of either uniform or exponentially distributed
positive numbers.

TABLE I
TABLE OF SIGNIFICANT VALUES FOR OUR EMPIRICAL RESULTS. SMALLER IS

BETTER.

Distribution Measurement Relative Error Note

U(−1, 1) RORA 2.104 × 10−14
U(−1, 1) max(RORA) 4.824 × 10−14

U(−1, 1) ROLA 8.358 × 10−12 max empirical
U(−1, 1) Canonical 6.124 × 10−12
U(−1, 1) Analytical 7.951 × 10−7

U(0, 1) RORA 6.702 × 10−16
U(0, 1) max(RORA) 4.073 × 10−15

U(0, 1) ROLA 1.282 × 10−14
U(0, 1) Canonical 1.062 × 10−14
U(0, 1) Analytical 1.776 × 10−8
U(0, 1) Robertazzi 6.848 × 10−16

U(−1000, 1000) RORA 3.194 × 10−15
U(−1000, 1000) max(RORA) 2.084 × 10−14

U(−1000, 1000) ROLA 3.711 × 10−14
U(−1000, 1000) Canonical 7.503 × 10−15
U(−1000, 1000) Analytical 7.951 × 10−7 max analytical

subn RORA 6.383 × 10−16 min empirical
subn max(RORA) 4.385 × 10−15
subn Canonical 6.945 × 10−14
subn Analytical 1.713 × 10−7 min analytical
subn Robertazzi 4.206 × 10−24 not achievable

machine � 1.110 × 10−16 double-precision

For subn, we get an impossibly small expected relative error
since it is much smaller than machine �. This is to be expected,
however, since subnormal numbers lack the same precision as

0.0e+00

1.4e−15

2.7e−15

4.1e−15

500 1000 1500 2000 2500

Maximum Reduction Tree Height

R
e
la

ti
ve

 E
rr

o
r

Reduction Tree Height with RORA and U(0,1)

cor = 0.200
n = 50,000, |A| = 100,000

Fig. 6. The bands are a result of the gap between floating-point values.

0.0e+00

2.2e−14

4.3e−14

6.5e−14

500 1000 1500 2000 2500

Maximum Reduction Tree Height

R
e
la

ti
ve

 E
rr

o
r

Reduction Tree Height with RORA and U(−1,1)

cor = −0.157
n = 50,000, |A| = 100,000

Fig. 7. The U(−1, 1) distribution has a larger error than U(0, 1).

normal numbers, and serves as more evidence that floating-
point summation can go awry for numbers very close to zero
(in the case of double precision, values smaller than 2−1022).
For the array size of our experiments (2 million elements),

we see the analytical bounds being particularly pessimistic:
they are between 6 and 7 orders of magnitude larger than our
observed results.

C. Reduction Tree Height and Error
When trying to answer the question of how to make our

reduction strategy (recall this is the combination of array
ordering and reduction tree shape), we ask: does reduction
tree height affect summation error? We looked at the maximum
height of each reduction tree for our experiments. Fig. 6 shows
a very weak correlation, with correlation coefficient � = 0.2.
We see a negative correlation with the U(−1, 1) distribution
in Fig. 7. However, we still plot these for completeness’ sake.

Now that we have seen some empirical examples from
manufactured arrays, we compare our results with a more
realistic use-case.

V. NEKBONE AND SIMGRID: A (ROBUST) CASE STUDY

SimGrid is an ambitious project to simulate MPI applica-
tions [3]. We use two of the many features of SimGrid in this
work: its simulation of network topology and its implemen-
tation of a large number of MPI reduction algorithms across
different MPI implementations including MPICH, OpenMPI,
Intel MPI, and MVAPICH [29]. Table II describes each of
these algorithms. We do not use every allreduce algorithm that

TABLE II
DESCRIPTIONS OF ALLREDUCE ALGORITHMS USED TO GENERATE FIG. 8.

“SMP” STANDS FOR SYMMETRIC MULTIPROCESSING—INTER-NODE
COMMUNICATION IS SEPARATE FROM INTRA-NODE [29].

Mnemonic Description

default naïve reduce then broadcast
impi use intel mpi selector
mpich use MPICH selector

mvapich2 use MVAPICH2 selector
mvapich2_rs rdb for small messages, else reduce-scatter

mvapich2_two_level smp intra-node, mpich inter-node
ompi use OpenMPI selector

ompi_ring_segmented OpenMPI ring algorithm
rab Rabenseifner
rab2 variation of rab (alltoall then allgather)

rab_rsag variation of rab (reduce-scatter-allgather)
rdb recursive doubling

redbcast reduce then broadcast
smp_binomial binomial tree

smp_binomial_pipeline binomial tree with 4096 byte pipeline
smp_rdb recursive doubling
smp_rsag reduce-scatter-allgather

SimGrid implements because some do not work for processor
counts which are not a power of two and our simulated
topology is a 72-node fat tree cluster.
Nekbone is a proxy application for the Nek5000 physics

simulation code [11]. Nek5000 is a powerful HPC applica-
tion for solving various computational fluid dynamics prob-
lems [12]. Nekbone is a simplified version of Nek5000 con-
taining only some key computational elements by solving
a three-dimensional Poisson equation using the conjugate
gradient iterative solver. We run Nekbone’s default settings:
101 iterations of conjugate gradient using polynomials of order
10. We simulate hardware with one MPI rank per node. Our
results are for 9,216 elements and we present the residuals
after the 101st iteration.
We plot the residuals using different allreduce algorithms

in Fig. 8. To better see the small changes between allreduce
algorithms, we define zero as the residual of SimGrid’s default
allreduce algorithm. One algorithm in particular resulted in a
residual an order of magnitude smaller every time: smp_rsag.
If this algorithm were plotted along with the rest, then the
distinction between all other algorithms would vanish. We
visualize this difference by tabulating smp_rsag’s residual
against the default and least accurate residuals in Table III.
The outlier smp_rsag has smaller error across the various

different simulated network topologies we used: 16 and 72-
node 2D tori and 16 and 72-node fat trees, as well as different
problem sizes. Further, executing Nekbone on a single node
with 16 MPI ranks natively using OpenMPI yielded the same
result for each of OpenMPIs seven allreduce algorithms. Thus,
we predict the cause is the interaction of Nekbone and SimGrid
but further investigation is needed.
Even with this outlier, there are just four different results for

all SimGrid algorithms. Comparing this to the combinatorial
number of acceptable MPI summation orders (1) shows there
is need for more nondeterminism when running simulations

= gap between doubles

⬳

 0.00e+00

1.43e-22

2.86e-22

4.29e-22

5.72e-22

7.15e-22

de
fau
lt
im
pi

mp
ich

mv
ap
ich
2

mv
ap
ich
2_
rs

mv
ap
ich
2_
tw
o_
lev
el
om
pi

om
pi_
rin
g_
se
gm
en
ted rab rab

2 rdb

red
bc
as
t

sm
p_
bin
om
ial

sm
p_
bin
om
ial
_p
ipe
lin
e

sm
p_
rdb

sm
p_
rsa
g

Allreduce Algorithm

D
if
fe
re
n
c
e
 f
ro
m

 D
e
fa
u
lt
 R
e
s
id
u
a
l

Unique Results for Nekbone on a 72-node Fat Tree Cluster

⬳
 s
m
p
_
rs
a
g
 =

 -
1
.2
5
e
-0
7

Fig. 8. Each bar represents the same residual for the conjugate gradient step of
Nekbone across 50 runs. We annotate the distance between two consecutive
double-precision floats at the scale of the residual. We cut off the y-axis
for otherwise observable differences between other algorithms and smp_rsag
would vanish. This shows four unique results among 16 allreduce algorithms.

TABLE III
THE SMP_RSAG ALGORITHM IS AN OUTLIER. SEVERAL ALGORITHMS MATCH

THE DEFAULT AND WORST, AS INDICTED IN FIG. 8.

Allreduce Algo. Rank Residual

Best (smp_rsag) 1.616 306 278 792 575 × 10−8
Default 14.082 603 491 982 575 × 10−8
Worst 14.082 603 491 982 647 × 10−8

to get a more complete idea of the space of potential results
of HPC codes.

VI. RELATED WORK

Concern over the accuracy of floating-point summation is
as old as floating-point arithmetic itself [31]. Further devel-
opments with analytical and statistical bounds for various
numerical algorithms is also a well-established area [15] and is
broadly contained under the field of numerical analysis. Tools
such as FPTaylor [25] and Daisy [7] use sophisticated meth-
ods such as symbolic Taylor expansions or SMT solvers, to
calculate tight bounds on floating point expressions. However,
rounding errors as they apply to MPI reduction operations is
less widely studied.

Our main influence is work by Chapp et al. on the error of
MPI collective operations [4]. This work provides empirical
evidence of floating-point error effects depending on the
amount of concurrency as well as reduction-tree shape. Their
work advocated a need for dynamic selection between summa-
tion algorithms. We refine Chapp’s model of MPI reduction er-
ror by considering random associations. We find for simulated
input—both of our work looks at U[−1000, 1000] floats—
random associations results in a lower expected summation
error.

Other work regarding MPI [30] looks into MPI collective
errors as they apply specifically to the convergence of the
conjugate gradient method applied to a power grid analysis.
While our work focuses on analyzing error from unmodified

HPC applications, other researchers take this further and strive
for bit-level reproducibility. One prominent project in this do-
main is an algorithm for parallel reproducible summation, [8]
and more generally the Reproducible BLAS project [9]. We
wish to analyze MPI error compared to ReproBLAS in the
future. A different project seeking bit-level reproducibility has
been undertaken by Arteaga et al. [1]
Common approaches to reduce summation error include

Kahan’s compensated summation [18] and prerounding [24].
Both of these can decrease summation error but have perfor-
mance impacts. Neither is provided by any commonly-used
MPI implementation.
SimGrid has also been used to check reproducibility by

Hoffeins et al. [17] However this focuses on dynamic loop
scheduling whereas we look at only the MPI reduction algo-
rithm itself.

VII. CONCLUSION AND FUTURE WORK

Our work begins a more detailed analysis of summation
error with MPI reduction algorithms. We looked the errors
for four different families of reduction strategies for a simple
MPI_Reduce as well as the space of possible solutions for one
HPC proxy application using MPI_Allreduce, Nekbone. We
showed that, at least for some common distributions, the re-
duction tree shape has a greater effect on the summation error
than the order of the array. We also saw that left-associativity
typically results in larger error compared to generating a
random ordering and reduction tree. This occurs because the
distributions we used result in summands of roughly the
same magnitude and left-associativity causes partial sums to
be much larger than the summands. We demonstrated that
analytical error bounds can vastly overestimate summation
error. The probability of each partial sum resulting in the
worst-case error is not realistic for most problem domains.
So, our statistical analysis produces more practically useful
expected error.
The problem of analyzing complex HPC applications for

error remains unsolved. As mentioned in Section I-A, our
experiments with independent, identically distributed random
numbers result in relatively predictable behavior. However,
distributions of floating-point numbers in HPC codes are far
from random. For example, a singular matrix effectively cannot
be generated by randomly generating its elements. A promising
future direction would be to generate both more realistic and
pathological random floating-point numbers.
The problem of generating realistic reduction strategies is

another interesting direction of research. The most precise
description of MPI reduction state space would depend on
both network topology and reduction algorithm. However,
some refinements to our model could be made: for example,
it is unlikely any MPI reduction algorithm would have a

large tree height; parallel reduction algorithms strive to com-
plete in O(log(n)) parallel steps. Rémy’s procedure generates
trees that have an asymptotically different height: on average
4
√

n∕� [19]. We investigated this somewhat and did not find
a correlation between the height of the reduction tree and
summation error (the correlation coefficient was between 0.2
and −0.16 for the distributions we sampled). However, it
remains to be seen whether generating realistic trees has a
significant effect on error.

Beyond this, MPI programs typically have highly-structured
reduction schemes. It would be interesting to investigate
multiple parallelism schemes and their effect on results. For
example, a vector with 107 elements may only be reduced
across a few dozen nodes, and inter-node summation may
be nondeterministic or deterministic depending on the shared
memory parallelism scheme. This limits the state space com-
pared to our random generation via Rémy’s procedure.

One challenge we note in this work on reproducibility is how
hard it can be to get different answers! Small problem sizes,
process counts, and simple examples usually result in identical
answers. On one hand, this is evidence of the great work by
the MPI and SimGrid developers: most MPI implementations
are deterministic when run on the same machine with the
same input. However, since the standard does not guarantee
reproducibility, we wish to explore the entire state space of
acceptable answers for a given application by varying the
topology and input space to expose potential discrepancies
when running at a larger scale or on a different architecture.
This could be done by modifying MPI reduction algorithms
to inject intentional nondeterminism. Another direction could
focus on amplifying errors by using highly numerically un-
stable input. Both of these strategies are not generalizable to
all applications but may give insight into the exact conditions
upon which an HPC program can fail.

ACKNOWLEDGEMENT

The authors would like to thank Augustin Degomme and the
SimGrid Team for their help with SimGrid, Dylan Chapp for
explaining his research, and Jackson Mayo for his insightful
comments.

REFERENCES

[1] A. Arteaga, O. Fuhrer, and T. Hoefler, “Designing bit-reproducible
portable high-performance applications,” in 28th International Parallel
and Distributed Processing Symposium, ser. IPDPS. IEEE, 2014,
pp. 1235–1244. [Online]. Available: https://htor.inf.ethz.ch/publications/
img/arteaga-fuhrer-hoefler-reproducible-apps-ipdps14.pdf

[2] P. Balaji and D. Kimpe, “On the reproducibility of MPI reduction
operations,” in 10th International Conference on High Performance
Computing and Communications & International Conference on Embed-
ded and Ubiquitous Computing, ser. HPCC/EUC. Zhangjiajie, China:
IEEE, 2013, pp. 407–414.

[3] H. Casanova, A. Giersch, A. Legrand, M. Quinson, and F. Suter,
“Versatile, scalable, and accurate simulation of distributed applications
and platforms,” Journal of Parallel and Distributed Computing,
vol. 74, no. 10, pp. 2899–2917, Jun. 2014. [Online]. Available:
http://hal.inria.fr/hal-01017319

[4] D. Chapp, T. Johnston, and M. Taufer, “On the need for reproducible
numerical accuracy through intelligent runtime selection of reduction
algorithms at the extreme scale,” in IEEE International Conference on
Cluster Computing. Chicago, IL, USA: IEEE, Sep. 2015, pp. 166–175.

[5] L. Clarke, I. Glendinning, and R. Hempel, “The MPI message passing
interface standard,” in Programming Environments for Massively Paral-
lel Distributed Systems, K. M. Decker and R. M. Rehmann, Eds. Basel:
Birkhäuser Basel, 1994, pp. 213–218.

[6] M. Dale and J. Moon, “The permuted analogues of three catalan sets,”
Journal of statistical planning and inference, vol. 34, no. 1, pp. 75–87,
Jan. 1993.

[7] E. Darulova, A. Izycheva, F. Nasir, F. Ritter, H. Becker, and R. Bastian,
“Daisy - framework for analysis and optimization of numerical programs
(tool paper),” in Tools and Algorithms for the Construction and Analysis
of Systems, D. Beyer and M. Huisman, Eds. Thessaloniki, Greece:
Springer International Publishing, 2018, pp. 270–287.

[8] J. Demmel and H. D. Nguyen, “Parallel reproducible summation,” IEEE
Transactions on Computers, vol. 64, no. 7, pp. 2060–2070, 2015.

[9] J. Demmel, P. Ahrens, and H. D. Nguyen, “Efficient reproducible
floating point summation and BLAS,” EECS Department,
University of California, Berkeley, Tech. Rep. UCB/EECS-2016-
121, Jun. 2016. [Online]. Available: http://www2.eecs.berkeley.edu/
Pubs/TechRpts/2016/EECS-2016-121.html

[10] T. O. Espelid, “On floating-point summation,” SIAM Review,
vol. 37, no. 4, pp. 603–607, 1995. [Online]. Available: https:
//doi.org/10.1137/1037130

[11] P. Fischer and K. Heisey, “NEKBONE: Thermal hydraulics mini-
application,” Tech. Rep., 2013, available at https://github.com/Nek5000/
Nekbone.

[12] P. Fischer and S. Kerkemeier, “NEK: a fast and scalable high-order
solver for computational fluid dynamics,” 2020, available at https:
//nek5000.mcs.anl.gov/.

[13] L. Fousse, G. Hanrot, V. Lefèvre, P. Pélissier, and P. Zimmermann,
“Mpfr: A multiple-precision binary floating-point library with correct
rounding,” Transactions on Mathematical Software, vol. 33, no. 2, Jun.
2007. [Online]. Available: http://doi.acm.org/10.1145/1236463.1236468

[14] N. J. Higham, “The accuracy of floating point summation,” SIAM
Journal of Scientific Computing, vol. 14, no. 4, pp. 783–799, 1993.

[15] ——, Accuracy and Stability of Numerical Algorithms, 2nd ed.
Philadelphia, PA, USA: Society for Industrial and Applied Mathematics,
2002.

[16] N. J. Higham and T. Mary, “A new approach to probabilistic
rounding error analysis,” SIAM Journal on Scientific Computing,
vol. 41, no. 5, pp. A2815–A2835, 2019. [Online]. Available:
https://doi.org/10.1137/18M1226312

[17] F. Hoffeins, F. M. Ciorba, and I. Banicescu, “Examining the repro-
ducibility of using dynamic loop scheduling techniques in scientific
applications,” in IEEE International Parallel and Distributed Processing
Symposium Workshops, ser. IPDPSW. Lake Buena Vista, FL, USA:
IEEE, 2017, pp. 1579–1587.

[18] W. Kahan, “Pracniques: Further remarks on reducing truncation errors,”
Communications of the ACM, vol. 8, no. 1, p. 40, Jan. 1965. [Online].
Available: https://doi.org/10.1145/363707.363723

[19] D. E. Knuth, The Art of Computer Programming: Generating All Trees;
History of Combinatorial Generation. Boston, MA, USA: Addison-
Wesley, 2006, vol. 4 Fascicle 4.

[20] U. Kulisch, “Very fast and exact accumulation of products,”
Computing, vol. 91, no. 4, p. 397–405, Apr. 2011. [Online]. Available:
https://doi.org/10.1007/s00607-010-0131-y

[21] G. Marsaglia and A. Zaman, “A new class of random number
generators,” The Annals of Applied Probability, vol. 1, no. 3, pp.
462–480, 1991. [Online]. Available: http://www.jstor.org/stable/2959748

[22] Message Passing Interface Forum, “MPI: A message-passing interface
standard: Version 3.1,” MPI Forum, Knoxville, TN, United States, Tech.
Rep., 2015.

[23] T. G. Robertazzi and S. C. Schwartz, “Best “ordering” for
floating-point addition,” Transactions on Mathematical Software,
vol. 14, no. 1, p. 101–110, Mar. 1988. [Online]. Available:
https://doi.org/10.1145/42288.42343

[24] S. M. Rump, “Ultimately fast accurate summation,” Journal of Scientific
Computing, vol. 31, no. 5, pp. 3466–3502, 2009.

[25] A. Solovyev, C. Jacobsen, Z. Rakamarić, and G. Gopalakrishnan,
“Rigorous estimation of floating-point round-off errors with symbolic
taylor expansions,” in International Symposium on Formal Methods, ser.
FM 2015, N. Bjørner and F. de Boer, Eds. Oslo, Norway: Springer
International Publishing, 2015, pp. 532–550.

[26] Z. Strakoš and P. Tichý, “On error estimation in the conjugate gradient
method and why it works in finite precision computations,” Electronic

https://htor.inf.ethz.ch/publications/img/arteaga-fuhrer-hoefler-reproducible-apps-ipdps14.pdf
https://htor.inf.ethz.ch/publications/img/arteaga-fuhrer-hoefler-reproducible-apps-ipdps14.pdf
http://hal.inria.fr/hal-01017319
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-121.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-121.html
https://doi.org/10.1137/1037130
https://doi.org/10.1137/1037130
https://github.com/Nek5000/Nekbone
https://github.com/Nek5000/Nekbone
https://nek5000.mcs.anl.gov/
https://nek5000.mcs.anl.gov/
http://doi.acm.org/10.1145/1236463.1236468
https://doi.org/10.1137/18M1226312
https://doi.org/10.1145/363707.363723
https://doi.org/10.1007/s00607-010-0131-y
http://www.jstor.org/stable/2959748
https://doi.org/10.1145/42288.42343

Transactions on Numerical Analysis, vol. 13, pp. 56–80, 2002.
[Online]. Available: https://www2.karlin.mff.cuni.cz/~strakos/download/
2002_StTi.pdf

[27] R. Thakur, R. Rabenseifner, and W. Gropp, “Optimization of collective
communication operations in MPICH,” International Journal of High
Performance Computing Applications, vol. 19, no. 1, pp. 49—-66, Feb.
2005. [Online]. Available: https://doi.org/10.1177/1094342005051521

[28] The Open MPI Development Team, MPIReduce(3) man page, 4th ed.,
Software in the Public Interest, Jun. 2020. [Online]. Available:
https://www.open-mpi.org/doc/v4.0/man3/MPI_Reduce.3.php

[29] The SimGrid Team, “SMPI: Simulate MPI applications,” 2020, available
at https://simgrid.org/doc/latest/app_smpi.html#mpi-allreduce.

[30] O. Villa, V. Gurumoorthi, and S. Krishnamoorthy, “Effects of
floating-point nonassociativity on numerical computations on massively
multithreaded systems,” in CUG 2009 Proceedings. Cray User
Group, 2009, pp. 1–11. [Online]. Available: http://citeseerx.ist.psu.edu/
viewdoc/summary?doi=10.1.1.458.2473

[31] J. H. Wilkinson, Rounding Errors in Algebraic Processes. Mineola,
NY, USA: Dover Publications, Inc., 1963.

APPENDIX

PROOF OF (2)
We proceed by proving the limit of the ratios diverge.

Observe:

lim
n→∞

Cn
n!∕2

= lim
n→∞

(2n)!
(n+1)!n!

n!∕2
= lim
n→∞

2(2n)!
(n + 1)!

= ∞.

Next, we find it more convenient to use n + 1 instead of n
for the second inequality. So

lim
n→∞

gn+1
(n + 1)!∕2

= lim
n→∞

2(2n − 1)!!
(n + 1)!

.

Since 2n − 1 is odd, we have

(2n − 1)!! =
(2n − 1)!
(2(n − 1))!!

.

And further, since 2(n−1) is even, we can factor out a 2 from
each term of (2(n − 1))!!:

(2n − 1)!! =
(2n − 1)!
(2(n − 1))!!

=
(2n − 1)!

2n−1(n − 1)!
.

Putting this all together,

lim
n→∞

2(2n − 1)!!
(n + 1)!

= lim
n→∞

2(2n−1)!
2n−1(n−1)!

(n + 1)!

= lim
n→∞

(2n−1)!
2n(n−1)!

(n + 1)n(n − 1)!

= lim
n→∞

(2n − 1)!
2n(n + 1)n

= ∞

because the factorial function grows faster than 2n.

ARTIFACT DESCRIPTION

All software used to generate the figures and results from
this paper are available under the GNU GPLv3 license at

∙ https://github.com/sampollard/reduce-error
using tag correctness-2020.
The data used to generate the results in this paper are

available under the GNU GPLv3 license at
∙ https://dx.doi.org/10.5281/zenodo.4047699
Instructions to re-generate the dataests are included in the

README.md provided in either repository.

A. Hardware Information
Experiments were performed on two Linux nodes:
1) Artemis

∙ Ubuntu 18.04.4 LTS running Linux 4.15.0-55-generic
∙ Two Intel Xeon Gold 6148 CPUs at 2.40GHz
∙ 384GiB DDR4 RAM at 2666MHz

2) Talapas (hpcf.uoregon.edu/content/talapas
∙ Only single nodes were requested
∙ lsb_release is core-4.1-amd64 running Linux ver-
sion 3.10.0-957.27.2.el7.x86_64

∙ Two Intel Xeon E5-2690v4 CPUs at 2.60Ghz
∙ 128GB DDR RAM
∙ IBM GPFS file system

B. Software Dependencies
∙ Lmod environment modules 7.7 to manage environment
variables.

∙ Shell scripts were run using Bash 4.4.20.
∙ Data analysis and figure generation were performed with

R 4.0.2 and ggplot2 version 3.3.2.
∙ Spack 0.13.4 to manage Boost and MPFR
∙ Boost 1.72.0
– Boost was loaded with

module load boost-1.72.0-gcc-7.5.0-q725eoa
∙ Simgrid 3.25.1, commit hash 4b7251c4ac80
∙ GNU MPFR 4.0.2
– MPFR was loaded using

module load mpfr-4.0.2-gcc-7.5.0-fveqzlf
∙ GCC and OpenMPI
– GCC 7.5.0 and OpenMPI 4.0.3 on Artemis
– GCC 7.3.0 and OpenMPI 2.1 on Talapas

https://www2.karlin.mff.cuni.cz/~strakos/download/2002_StTi.pdf
https://www2.karlin.mff.cuni.cz/~strakos/download/2002_StTi.pdf
https://doi.org/10.1177/1094342005051521
https://www.open-mpi.org/doc/v4.0/man3/MPI_Reduce.3.php
https://simgrid.org/doc/latest/app_smpi.html#mpi-allreduce
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.458.2473
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.458.2473
https://github.com/sampollard/reduce-error
https://dx.doi.org/10.5281/zenodo.4047699
hpcf.uoregon.edu/content/talapas

	Introduction
	Hypothesis
	Contributions

	State Space of MPI Reduction Operations
	Reduction Operations
	Quantifying the State Space of Possible Reductions
	Generating Samples
	The Nondeterminism of Reduction Algorithms
	Generating Random Floating-Point Values

	Analytical Error Bounds and Estimators
	Empirical Results
	Distribution of Summation Errors
	Comparing Empirical and Analytical Bounds
	Reduction Tree Height and Error

	Nekbone and SimGrid: A (Robust) Case Study
	Related Work
	Conclusion and Future Work
	References
	Appendix
	Hardware Information
	Software Dependencies

