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Abstract—The rapidly growing number of large net-
work analysis problems has led to the emergence
of many parallel and distributed graph processing
systems—one survey in 2014 identified over 80. De-
termining the best approach for a given problem is
infeasible for most developers. We present an approach
and associated software for analyzing the performance
and scalability of parallel, open-source graph libraries.
We demonstrate our approach on five graph process-
ing packages: GraphMat, Graph500, Graph Algorithm
Platform Benchmark Suite, GraphBIG, and Power-
Graph using synthetic and real-world datasets. We
examine previously overlooked aspects of parallel graph
processing performance such as phases of execution and
energy usage for three algorithms: breadth first search,
single source shortest paths, and PageRank.

I. Extended Abstract
A. Motivation

Any user wishing to perform graph analytics faces the
daunting task of selecting which software package to use
given a problem. Installing, satisfying dependencies, and
determining which algorithms are supported is nontrivial.
Input file formats, and stopping criteria vary across pack-
ages.

B. Architectural Overview
Our framework, easy-parallel-graph-∗, comprises Bash

shell scripts which automate each step of the experiment.
Our framework breaks the process of characterizing per-
formance into five principal phases as follows.
1) Installing modified, stable forks of each software pack-

age to ensure homogeneity.
2) Given a synthetic graph size or a real-world graph

file, generate the files necessary to run each software
package.

3) Given a graph and the number of threads, run each
algorithm using each software package multiple times.

4) Parse through the log files to compress the output
into a CSV.

5) Analyze the data using the provided R scripts to
generate plots.

The source code is freely available at https://github.com/
HPCL/easy-parallel-graph.

C. Algorithms and Packges
We provide analysis for three algorithms and five pack-

ages, though not all packages implement all algorithms.
The algorithms are Breadth First Search (BFS), Single
Source Shortest Paths (SSSP), and PageRank. The pack-
ages are listed below:
1) The Graph500 [9] consists of a specification and ref-

erence implementation of BFS.
2) The Graph Algorithm Platform (GAP) Benchmark

Suite [1], a set of reference implementations for shared
memory graph processing. GAP implements all three
algorithms.

3) GraphBIG [10] benchmark suite, all three algorithms.
4) GraphMat [12], a library and programming model, all

three algorithms.
5) PowerGraph [4], a library for distributed and shared

memory graph-parallel computation. Powergraph
provides SSSP and PageRank reference implementa-
tions.

D. Related Work
Graphalytics [3] is the most prominent benchmark suite

presented and is still active. Other benchmark suites which
to the best of our knowledge do not have associated
publications are GraphBench1 and Graph Package Test-
ing2. Additionally, each graph processing package typically
presents its own performance analysis.

E. Datasets
Our framework supports synthetic datasets consisting

of Kronecker Graphs [7], a generalization of the RMAT
graphs and are used in the Graph500.
Additionally, any dataset in the format of the Stanford

Network Analysis Project [8] (SNAP) may be used3. For
our examples we use the Dota-League dataset [5] and the
cit-Patents dataset [6].
Each graph is made undirected and unweighted, then

converted to the formats necessary for each implementa-
tions

1https://github.com/uwsampa/graphbench
2https://github.com/robmccoll/graphdb-testing
3This format is one edge per line with # as comment lines.
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Fig. 1. We plot CPU Power Consumption for each of the 32 roots.
Since Graph500 runs multiple roots per execution, we only get a
single data point. The baseline monitors power consumption during
the execution of the C unistd function sleep(10) (ten seconds).

F. Results
We use the Performance Application Programming In-

terface (PAPI) [2] to access Intel’s Running Average Power
Limit (RAPL), which provides a set of hardware counters
for measuring energy usage. Results from this are shown
in Fig. 1.
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Fig. 2. Parallel efficiency for a scale-23 graph. T1 is the serial time,
n is the number of threads, and Tn is the time with n threads.

Figure 2 shows the parallel efficiency, T1/(nTn) for dif-
ferent implementations of BFS. Ideal efficiency is defined
as Tn = T1/n and is the horizontal line near the top of
Fig. 2.

Fig. 3 shows results for real-world experiments.

G. Conclusion and Future Work
A comparison of implementations requires tedious en-

gineering effort. The newest framework, GAP, is the best
performing framework in most cases.

Future improvements will add more algorithms and
packages; support for triangle counting and Galois [11] is
nearly complete.

Searching for optimal parameters for SSSP (∆-stepping)
and BFS (direction-optimizing parameters α and β) via
search would also increase performance for graph package
users.
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Fig. 3. Real world experiments using easy-parallel-graph-∗ averaged
across 32 runs.
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