
Verification Techniques for Low-Level Programs

Samuel D. Pollard

Computer and Information Science

February 21, 2019

Intro FM in Practice IRs Floats Parallelism Conclusion

Outline HPCLHPCL

1 Introduction

2 Formal Methods in Practice

3 Intermediate Representations

4 Floating Point Arithmetic

5 SIMD Parallelism

6 Conclusion

2 / 40

Intro FM in Practice IRs Floats Parallelism Conclusion

Why These Three Topics? HPCLHPCL

Mathematics Parallelism Programming

category
theory

distributed
systems

high-level
language

real
analysis

shared memory
parallelism

intermediate
representation

numerical
analysis vectorization assembly

m
or
e
ab
st
ra
ct
io
n

§ 3§ 4

§ 5

3 / 40

Intro FM in Practice IRs Floats Parallelism Conclusion

HPCLHPCL

1 Introduction

2 Formal Methods in Practice

3 Intermediate Representations

4 Floating Point Arithmetic

5 SIMD Parallelism

6 Conclusion

4 / 40

Intro FM in Practice IRs Floats Parallelism Conclusion

What is Formal Methods? (In 5 Seconds) HPCLHPCL

Using math to make sure your computer does what it’s supposed to do

5 / 40

Intro FM in Practice IRs Floats Parallelism Conclusion

What is Formal Methods? HPCLHPCL

I The application of theoretical computer science, math, type theory,
logic, and even philosophy to computer programs

I Formal methods is like a coin with two sides
1 Designing a machine-readable and machine-checkable formal

specification
English is always informal
e.g. logical formula, program in Coq, or even the type of a function

2 Ensuring software obeys this specification.
{Type, model, satisfiability, proof} checker

I In math, the parallel is theorem and proof.
• This parallel is a very deep result of computer science

6 / 40

Intro FM in Practice IRs Floats Parallelism Conclusion

Why Do We Need Formal Methods? HPCLHPCL

I Therac-25 - race
condition gave
100× radiation
dosage

I Patriot Missile bug
- accumulating
timing error killed
28

7 / 40

Intro FM in Practice IRs Floats Parallelism Conclusion

A Story of Paradoxes HPCLHPCL

I Liar’s Paradox: “This statement is false.”
I The issue lies with self-reference
I Analogue in λ-calculus is Curry’s Paradox

8 / 40

Intro FM in Practice IRs Floats Parallelism Conclusion

Simply Typed Lambda Calculus (STLC) HPCLHPCL

I By Alonzo Church in 1940
I Invented to prevent paradoxes of

untyped λ-calculus
I STLC is total so is not Turing Complete

STLC Grammar

t ::= x | t t | λx : τ. t

v ::= λx : τ. t

τ ::= bool | int | τ → τ

Γ ::= ∅ | Γ, x : τ

e.g. type differently fst and True

(λx : τ. λy : τ. x) : bool

9 / 40

Intro FM in Practice IRs Floats Parallelism Conclusion

Logics HPCLHPCL

I Propositional Logic: ⇐⇒ ,∧,∨, =⇒ ,¬
• NP-Complete: given a formula, we can determine satisfiability in at most

exponential time
• Rules of chess in 100,000 pages

I First-Order Logic: ∀,∃
• Undecidable: Given a formula, we cannot in general determine satisfiability
• Rules of Chess in 1 page

10 / 40

Intro FM in Practice IRs Floats Parallelism Conclusion

Canonical Verification Techniques HPCLHPCL

I Hoare Logic
I Satisfiability Modulo Theories (SMT)
I Abstract interpretation

11 / 40

Intro FM in Practice IRs Floats Parallelism Conclusion

Hoare Logic HPCLHPCL

I Has the form {P}Q{R}
I Specify predicate transformer semantics
I Compute weakest

precondition/strongest postcondition

{x > 5} x := x * 2 {x > 10}

12 / 40

Intro FM in Practice IRs Floats Parallelism Conclusion

Satisfiability Modulo Theories (SMT) HPCLHPCL

I Propositional logic +
theory of

I Matrix Multiplication of
formal methods

I Satisfiable (Integers):
x + 2y = 20 ∧ x − y = 2

I Unsatisfiable (Integers):
(x > 0) ∧ (y > 0) ∧ (x + y < 0)

I Unsatisfiable (Float) but long runtime

(−2 ≤ x ≤ 2) ∧ (−2 ≤ y ≤ 2)

∧(−1 ≤ z ≤ 1)

∧(x ≤ y) ∧ (y + z < x + z)

13 / 40

Intro FM in Practice IRs Floats Parallelism Conclusion

Abstract Interpretation HPCLHPCL

I Sound static analysis
• Static analysis -

discovering properties
of a program without
executing it

• Sound - no false
negatives

14 / 40

Intro FM in Practice IRs Floats Parallelism Conclusion

Abstract Interpretation HPCLHPCL

float unsafe(float x) {
if (x==0.0)
return 0.0;

else
return 1.0 / x;

}

I Create an abstract domain
I Define semantics on abstract

domain
I “Interpret” your program to see

what values pop out
• For example, we wish to ensure

we never divide by zero.

15 / 40

Intro FM in Practice IRs Floats Parallelism Conclusion

Abstract Interpretation HPCLHPCL

float unsafe(float x) {
if (x==0.0)
return 0.0;

else
return 1.0 / x;

}

I Abstract Domain:
nnz / = Handled?
0 ±∞ 3

nnz flt 7

NaN NaN 7

±∞ 0 7

flt flt

16 / 40

Intro FM in Practice IRs Floats Parallelism Conclusion

Abstract Interpretation HPCLHPCL

#include <math.h>
float mostlysafe(float x) {
if (x==0. || isnan(x) || isinf(x))
return 0.;

else
return 1. / x;

}

I Abstract Domain:
nnz / = Handled?
0 ±∞ 3

nnz flt 7

NaN NaN 3

±∞ 0 3

flt flt

17 / 40

Intro FM in Practice IRs Floats Parallelism Conclusion

Abstract Interpretation HPCLHPCL

#include <math.h>
float mostlysafe(float x) {
if (x==0. || isnan(x) || isinf(x))
return 0.;

else
return 1. / x;

}

I Abstract Domain:
nnz / = Handled?
0 ±∞ 3

nnz flt 7

NaN NaN 3

±∞ 0 3

flt flt

17 / 40

Intro FM in Practice IRs Floats Parallelism Conclusion

Abstract Interpretation HPCLHPCL

#include <math.h>
float reallysafe(float x) {

// Cast to int without changing bits
unsigned long c = ∗(unsigned long∗) &x;
if (isnan(x) || isinf(x) ||

(0x80000000 <= c && c <= 0x80200000) ||
(0x00000000 <= c && c <= 0x00200000))
return 0.;

else
return 1. / x;

}

I Abstract Domain:
nnz / = Handled?
0 ±∞ 3

nnz flt 3

NaN NaN 3

±∞ 0 3

flt flt

18 / 40

Intro FM in Practice IRs Floats Parallelism Conclusion

HPCLHPCL

1 Introduction

2 Formal Methods in Practice

3 Intermediate Representations

4 Floating Point Arithmetic

5 SIMD Parallelism

6 Conclusion

19 / 40

Intro FM in Practice IRs Floats Parallelism Conclusion

Design Decisions HPCLHPCL

1 To what degree of confidence must the software be guaranteed?
2 What tools can be used to accomplish 1?
3 How much time can a human spend on 2? How much time can a

computer spend on 2?

20 / 40

Intro FM in Practice IRs Floats Parallelism Conclusion

Degree of Confidence HPCLHPCL

I Formal methods is not a silver bullet
• More like a flu vaccine

I Security vulnerability found in the WPA2
WiFi standard which had been proven
secure

I Vulnerability related to temporal property
which WPA2 did not specify

“Beware of bugs in the above
code; I have only proved it
correct, not tried it” — Donald
Knuth

21 / 40

Intro FM in Practice IRs Floats Parallelism Conclusion

Properties You Might Care About HPCLHPCL

I Basic safety guarantees
• Will ipow work for all

integers?
• Can be handled (mostly)

automatically by SMT
solvers

int ipow(int x, int n) {
if (n==0) return 1;
return x ∗ ipow(x,n−1);

}
int main() {
int a,b,c,n;
n = 3; c = 0;
while (1) {

c++;
for (a = 1; a < c; a++) {
for (b = 1; b < c; b++) {
if (ipow(a,n)+ipow(b,n)==ipow(c,n))
return 0;

} } } }
22 / 40

Intro FM in Practice IRs Floats Parallelism Conclusion

Properties You Might Care About HPCLHPCL

I Does this program test all
combinations of a, b, and
c?
• Requires loop invariants

and annotating code
• Proves partial

correctness; if the code
terminates, then we get
the right answer

int ipow(int x, int n) {
if (n==0) return 1;
return x ∗ ipow(x,n−1);

}
int main() {
int a,b,c,n;
n = 3; c = 0;
while (1) {

c++;
for (a = 1; a < c; a++) {
for (b = 1; b < c; b++) {
if (ipow(a,n)+ipow(b,n)==ipow(c,n))
return 0;

} } } }
23 / 40

Intro FM in Practice IRs Floats Parallelism Conclusion

Properties You Might Care About HPCLHPCL

I Does this program
terminate?
• Until 1995, no one knew

int ipow(int x, int n) {
if (n==0) return 1;
return x ∗ ipow(x,n−1);

}
int main() {
int a,b,c,n;
n = 3; c = 0;
while (1) {

c++;
for (a = 1; a < c; a++) {
for (b = 1; b < c; b++) {
if (ipow(a,n)+ipow(b,n)==ipow(c,n))
return 0;

} } } }
24 / 40

Intro FM in Practice IRs Floats Parallelism Conclusion

Tools for Formal Methods HPCLHPCL

25 / 40

Intro FM in Practice IRs Floats Parallelism Conclusion

Tools for Formal Methods HPCLHPCL

I Tradeoff between
automation and strength of
what can be verified

I What prevents us from
reaching the Holy Grail is
the fundamental limit of
computation

I Rice’s Theorem

Strength of Claims

A
ut
om

at
io
n

Proof Assistants

Deductive Program Provers

Model Checkers

Static Analyzers

Property-Based Testing

Domain-Specific Provers

Holy Grail

26 / 40

Intro FM in Practice IRs Floats Parallelism Conclusion

Notable Proof Assistants HPCLHPCL

System
de Bruijn
criterion Tactics

Coq 3 3

HOL 3 7

ACL2 7 3

PVS 3 3

Twelf 7 7

F? 3 3

NuPRL 7 3

Agda 7 7

Lean 3 3

I Coq - Proved the four color theorem
I HOL/Isabelle - Intel and Cambridge
I ACL2 - UTexas’, also (probably) AMD
I PVS - Used at NASA
I F?, Lean - Microsoft
I NuPRL - Cornell; oldest listed here; 1984

27 / 40

Intro FM in Practice IRs Floats Parallelism Conclusion

The Martian HPCLHPCL

28 / 40

Intro FM in Practice IRs Floats Parallelism Conclusion

HPCLHPCL

1 Introduction

2 Formal Methods in Practice

3 Intermediate Representations

4 Floating Point Arithmetic

5 SIMD Parallelism

6 Conclusion

29 / 40

Intro FM in Practice IRs Floats Parallelism Conclusion

Verifying IRs HPCLHPCL

I WebAssembly - Machine-checkable semantics
I Vellvm - LLVM in Coq
I BAP - Binary analysis platform

30 / 40

Intro FM in Practice IRs Floats Parallelism Conclusion

HPCLHPCL

1 Introduction

2 Formal Methods in Practice

3 Intermediate Representations

4 Floating Point Arithmetic

5 SIMD Parallelism

6 Conclusion

31 / 40

Intro FM in Practice IRs Floats Parallelism Conclusion

Some Quirks of Floating Point Arithmetic HPCLHPCL

I Tension between “floats as bits” and “floats as reals”
I Having the same bit pattern is neither necessary nor sufficient for two IEEE

754 floats to be considered equal
• 0 . . . 0 and 10 . . . 0 represent −0 and +0 which are equal
• NaNs are all not equal to each other

32 / 40

Intro FM in Practice IRs Floats Parallelism Conclusion

Formalizing Real Numbers HPCLHPCL

I Coq library Flocq
I Doesn’t concern itself with bit-level representations
I No maximum exponents!

33 / 40

Intro FM in Practice IRs Floats Parallelism Conclusion

HPCLHPCL

1 Introduction

2 Formal Methods in Practice

3 Intermediate Representations

4 Floating Point Arithmetic

5 SIMD Parallelism

6 Conclusion

34 / 40

Intro FM in Practice IRs Floats Parallelism Conclusion

Why is This Challenging? HPCLHPCL

I Increasing vector widths means more complex CFG, difficult to
automatically (and hand) vectorize

I Code transformations may assume associativity (too aggressive)
I Code transformations may match scalar code (too conservative)

35 / 40

Intro FM in Practice IRs Floats Parallelism Conclusion

HPCLHPCL

1 Introduction

2 Formal Methods in Practice

3 Intermediate Representations

4 Floating Point Arithmetic

5 SIMD Parallelism

6 Conclusion

36 / 40

Intro FM in Practice IRs Floats Parallelism Conclusion

Conclusion HPCLHPCL

I Formal Methods are two things:
1 Formal Specification - creating unambiguous,

computer-checkable description of the program
2 Model Checking - proving (or refuting) the

program obeys this spec.
I Theoretically many of FM algorithms are

undecidable or at least NP-Hard
• In practice these scale surprisingly well
• i.e. programs terminate or scale beyond n = 35

ℵ

37 / 40

Intro FM in Practice IRs Floats Parallelism Conclusion

In Defense of FM HPCLHPCL

I A complaint of formal methods is it’s
too expensive

I FM isn’t all-or-nothing
• Consider a type checker
• Static analyzers can be part of

software engineering workflow
• e.g. CI, red squiggly lines in Eclipse Ariane 5 - $500 million software

bug: incorrectly converted 64-bit
float to 16-bit integer

38 / 40

Intro FM in Practice IRs Floats Parallelism Conclusion

XKCD Tax HPCLHPCL

39 / 40

Intro FM in Practice IRs Floats Parallelism Conclusion

Future Work HPCLHPCL

I Formalizing IEEE-754, MIL-STD-1750A, and
Posits in a unified way
• Look at floats both as bits and real numbers
• Existing packages do only one (Flocq: R, SMT

Solvers: bits)

I Existing scientific codes only flip one switch - to
use float or double; can we do better?

I SIMD transformations are rigid, GCC -O3 is not
rigid enough

I Quameleon - multi-ISA binary analysis at Sandia

40 / 40

	Introduction
	Formal Methods in Practice
	Intermediate Representations
	Floating Point Arithmetic
	SIMD Parallelism
	Conclusion

