Verification Techniques for Low-Level Programs

Samuel D. Pollard

February 21, 2019

Outline			HPCL

- 2 Formal Methods in Practice
- 3 Intermediate Representations
- 4 Floating Point Arithmetic
- 5 SIMD Parallelism
- 6 Conclusion

Intro		FM in Practice	IRs	Floats	Parallelism	Conclusion
Why	Th	ese Three T	opics?			HPCL
	+	Mathematics		Parallelism	Progra	amming
	action	category theory		distributed systems	high Iang	i-level guage
	e abstr	real analysis	sh	ared memory parallelism	interr represe	nediate entation
	mor	numerical <u> </u>	-§ 5	yectorization	asse	§ 3 embly
O	GON					3 / 40

		he d

- 2 Formal Methods in Practice
- 3 Intermediate Representations
- 4 Floating Point Arithmetic
- 5 SIMD Parallelism

6 Conclusion

HPCL

What is Formal Methods? (In 5 Seconds)

Using math to make sure your computer does what it's supposed to do

- The application of theoretical computer science, math, type theory, logic, and even philosophy to computer programs
- Formal methods is like a coin with two sides
 - Designing a machine-readable and machine-checkable formal specification
 - English is always informal
 - e.g. logical formula, program in Coq, or even the type of a function
 - **2** Ensuring software obeys this specification.
 - {Type, model, satisfiability, proof} checker
- ▶ In math, the parallel is theorem and proof.

• This parallel is a very deep result of computer science

Floats

Why Do We Need Formal Methods?

- Therac-25 race condition gave 100× radiation dosage
- Patriot Missile bug

 accumulating
 timing error killed
 28

- ▶ Liar's Paradox: "This statement is false."
- ► The issue lies with self-reference
- Analogue in λ -calculus is Curry's Paradox

STI C Grammar

- $t ::= x \mid t \mid \lambda x : \tau. t$ $\mathbf{v} ::= \lambda \mathbf{x} : \tau$. t $\tau ::= \mathsf{bool} \mid \mathsf{int} \mid \tau \to \tau$ $\Gamma ::= \emptyset \mid \Gamma, x : \tau$
- e.g. type differently fst and True

 $(\lambda x : \tau. \lambda y : \tau. x)$: bool

- Invented to prevent paradoxes of untyped λ -calculus
- ► STLC is total so is not Turing Complete

Logics			HPCL

- ▶ Propositional Logic: \iff , \land , \lor , \implies , \neg
 - NP-Complete: given a formula, we can determine satisfiability in at most exponential time
 - Rules of chess in 100,000 pages
- ▶ First-Order Logic: \forall, \exists
 - Undecidable: Given a formula, we cannot in general determine satisfiability
 - Rules of Chess in 1 page

IRs

Floats

Canonical Verification Techniques

- ► Hoare Logic
- Satisfiability Modulo Theories (SMT)
- Abstract interpretation

- ▶ Has the form $\{P\}Q\{R\}$
- Specify predicate transformer semantics
- Compute weakest precondition/strongest postcondition

 $\{x > 5\} x := x * 2 \{x > 10\}$

IRs

Floats

Satisfiability Modulo Theories (SMT)

- Propositional logic + theory of ______
- Matrix Multiplication of formal methods

- Satisfiable (Integers):
 - $x+2y=20 \wedge x-y=2$
- Unsatisfiable (Integers): $(x > 0) \land (y > 0) \land (x + y < 0)$
- Unsatisfiable (Float) but long runtime

$$(-2 \le x \le 2) \land (-2 \le y \le 2)$$

 $\land (-1 \le z \le 1)$
 $\land (x \le y) \land (y + z < x + z)$

- Sound static analysis
 - Static analysis discovering properties of a program without executing it
 - Sound no false negatives

3. **Basic GC semantics** Basic GCs are primitive abstractions of properties. Classical examples are the *identity abstraction* S[[1](C, $[]] \triangleq \langle \mathcal{C}, \sqsubseteq \rangle \xleftarrow{\lambda_Q \cdot Q} \langle \mathcal{C}, \sqsubseteq \rangle, \text{ the top abstraction } \mathcal{S}[\![\top [\langle \mathcal{C}, \square \rangle] \rangle]$ $\begin{array}{l} \sqsubseteq \rangle, \top] \rrbracket \triangleq \langle \mathcal{C}, \sqsubseteq \rangle \xleftarrow{\boldsymbol{\lambda} Q \bullet \top} \langle \mathcal{C}, \sqsubseteq \rangle, \text{the join abstraction } \mathcal{S} \llbracket \cup [C] \rrbracket \\ \triangleq \langle \wp(\wp(C)), \subseteq \rangle \xleftarrow{\gamma^{\flat} P \bullet \top} \langle \wp(C), \subseteq \rangle \text{ with } \alpha^{\wp}(P) \triangleq \bigcup P, \gamma^{\wp}(Q) \triangleq \end{array}$ $\wp(Q)$, the complement abstraction $\mathcal{S}[\![\neg[C]]\!] \triangleq \langle \wp(C), \subseteq \rangle \xleftarrow{\neg}$ $\langle \wp(C), \supseteq \rangle$, the finite/infinite sequence abstraction $\mathcal{S}[\![\infty[C]]\!] \triangleq$ $\langle \wp(C^{\infty}), \subseteq \rangle \xrightarrow{\gamma^{\infty}} \langle \wp(C), \subseteq \rangle \text{ with } \alpha^{\infty}(P) \triangleq \{ \sigma_i \mid \sigma \in P \land i \in \mathbb{C} \}$ dom (σ) } and $\gamma^{\infty}(Q) \triangleq \{\sigma \in C^{\infty} \mid \forall i \in \text{dom}(\sigma) : \sigma_i \in Q\}$, the transformer abstraction $\mathcal{S}[\![\rightsquigarrow [C_1, C_2]]\!] \triangleq \langle \wp(C_1 \times C_2), \subseteq \rangle \xleftarrow{\gamma^{\sim}}$ $\langle \wp(C_1) \xrightarrow{\cup} \wp(C_2), \dot{\subseteq} \rangle$ mapping relations to join-preserving transformers with $\alpha^{\rightarrow}(R) \triangleq \lambda X \cdot \{y \mid \exists x \in X : \langle x, y \rangle \in R\},\$ $\gamma^{\sim}(g) \triangleq \{\langle x, y \rangle \mid y \in g(\{x\})\}, \text{ the function abstraction}$ $\mathcal{S}\llbracket \mapsto [C_1, C_2] \rrbracket \triangleq \langle \wp(C_1 \mapsto C_2), \subseteq \rangle \xleftarrow{\gamma^{\mapsto}} \langle \wp(C_1) \mapsto \wp(C_2),$

Abstract Interpretation


```
float unsafe(float x) {
  if (x = = 0.0)
    return 0.0;
  else
    return 1.0 / x:
}
```

- Create an abstract domain
- Define semantics on abstract domain
- "Interpret" your program to see what values pop out
 - For example, we wish to ensure we never divide by zero.

Abstrac	ct Interpretatio	on		HPCL

```
float unsafe(float x) {
    if (x==0.0)
        return 0.0;
    else
        return 1.0 / x;
}
```

Abstract	t Doma	in:
nnz /	=	Handled?
0	$\pm\infty$	✓
nnz	flt	×
NaN	NaN	×
$\pm\infty$	0	×
flt	flt	

Abstract	Interpretati	on		HPCL

```
#include <math.h>
float mostlysafe(float x) {
    if (x==0. || isnan(x) || isinf(x))
        return 0.;
    else
        return 1. / x;
}
```


Abstract Interpretation


```
#include <math.h>
float mostlysafe(float x) {
 if (x==0, || isnan(x) || isinf(x))
    return 0.;
  else
   return 1. / x;
}
```

Abstract	t Doma	in:
nnz /	=	Handled?
0	$\pm\infty$	 Image: A set of the set of the
nnz	flt	×
NaN	NaN	1
$\pm\infty$	0	1
flt	flt	

Abstract Interpretation


```
#include <math.h>
float reallysafe(float x) {
  // Cast to int without changing bits
  unsigned long c = *(unsigned long*) \&x;
  if (isnan(x) || isinf(x) ||
     (0x80000000 \le c \&\& c \le 0x80200000)
     (0x0000000 \le c \&\& c \le 0x0020000))
    return 0.:
  else
    return 1. / x;
```

Abstract	t Doma	in:
nnz /	=	Handled?
0	$\pm\infty$	✓
nnz	flt	1
NaN	NaN	1
$\pm\infty$	0	1
flt	flt	

FM in Practice		
		ha an f
		HPCL

- 2 Formal Methods in Practice
- 3 Intermediate Representations
- 4 Floating Point Arithmetic
- 5 SIMD Parallelism

6 Conclusion

- **I** To what degree of confidence must the software be guaranteed?
- 2 What tools can be used to accomplish 1?
- 3 How much time can a human spend on 2? How much time can a computer spend on 2?

- ► Formal methods is not a silver bullet
 - More like a flu vaccine
 - Security vulnerability found in the WPA2 WiFi standard which had been proven secure
 - Vulnerability related to temporal property which WPA2 did not specify

"Beware of bugs in the above code; I have only proved it correct, not tried it" — Donald Knuth

Intro	FM in Practice	IRs	Floats	Parallelism	Conclusion
Propertie	es You Might Ca	re A	bout		HPCL
► Basic	c safety guarantees Will ipow work for all integers? Can be handled (mostly automatically by SMT solvers) 	<pre>nt ipow(int x, int n if (n==0) return return x * ipow() nt main() { int a,b,c,n; n = 3; c = 0; while (1) { c++; for (a = 1; a < c for (b = 1; b</pre>	u) { 1; x,n-1); c; a++) { < c; b++) { .)+ipow(b,n)==	-ipow(c,n))
OREGON		ר			22 / 40

Properties You Might Care About int ipow(int x, int n) { if (n==0) return 1: Does this program test all **return** x * ipow(x,n-1);combinations of a. b. and c? int main() { int a,b,c,n; Requires loop invariants n = 3; c = 0;and annotating code while (1) { Proves partial c++:correctness: if the code for (a = 1; a < c; a++) { terminates, then we get for (b = 1; b < c; b++) { the right answer if (ipow(a,n)+ipow(b,n)==ipow(c,n))

return 0:

OREGON

Intro	FM in Practice	IRs	Floats	Parallelism	Conclusion
Propert	ies You Might (Care Ab	out	_	HPCL
	es this program minate? • Until 1995, no one kr	new in the second se	<pre>t ipow(int x, int n if (n==0) return return x * ipow(: t main() { int a,b,c,n; n = 3; c = 0; while (1) { c++; for (a = 1; a < c for (b = 1; b if (ipow(a,n return 0; } })</pre>) { 1; x,n-1); ; a++) { < c; b++) {)+ipow(b,n)==	-ipow(c,n))
		11 -			24/40

software engineer: linear is fast, quadratic is slow complexity theorist: P is fast. NP-hard is slow

verification researcher: decidable is fast. undecidable is slow

8:47 AM - 13 Dec 2018

Notable Proof Assistants

System	de Bruijn criterion	Tactics
Coq	✓	\checkmark
HOL	✓	×
ACL2	×	\checkmark
PVS	✓	 Image: A second s
Twelf	×	×
F*	✓	\checkmark
NuPRL	×	1
Agda	×	×
Lean	✓	\checkmark
UNIVERSITY OF	•	•

- Coq Proved the four color theorem
- ► HOL/Isabelle Intel and Cambridge
- ACL2 UTexas', also (probably) AMD
- PVS Used at NASA
- ▶ F^{*}, Lean Microsoft
- NuPRL Cornell; oldest listed here; 1984

Intro

FM i

Practice

IRs

Floats

Paralleli

Conclusion

	IRs		

- 2 Formal Methods in Practice
- 3 Intermediate Representations
- 4 Floating Point Arithmetic
- 5 SIMD Parallelism

6 Conclusion

HPCL

		IRs		
Verifyi	ng IRs			HPCL

- ▶ WebAssembly Machine-checkable semantics
- ▶ Vellvm LLVM in Coq
- ▶ BAP Binary analysis platform

	Floats		
lin_e af			
HPCL			

- 2 Formal Methods in Practice
- 3 Intermediate Representations
- 4 Floating Point Arithmetic
- 5 SIMD Parallelism

6 Conclusion

Some Quirks of Floating Point Arithmetic

- Tension between "floats as bits" and "floats as reals"
- Having the same bit pattern is neither necessary nor sufficient for two IEEE 754 floats to be considered equal
 - 0...0 and 10...0 represent -0 and +0 which are equal
 - NaNs are all not equal to each other

- Coq library Flocq
- Doesn't concern itself with bit-level representations
- No maximum exponents!

		Parallelism	
			he d

- 2 Formal Methods in Practice
- 3 Intermediate Representations
- 4 Floating Point Arithmetic
- 5 SIMD Parallelism

6 Conclusion

HPCL

			Parallelism	
Why is	s This Challeng	ing?		HPCL

- Increasing vector widths means more complex CFG, difficult to automatically (and hand) vectorize
- Code transformations may assume associativity (too aggressive)
- Code transformations may match scalar code (too conservative)

Conclusion			
he at			

- 2 Formal Methods in Practice
- 3 Intermediate Representations
- 4 Floating Point Arithmetic
- 5 SIMD Parallelism

6 Conclusion

HPCL

- Formal Methods are two things:
 - **1** Formal Specification creating unambiguous, computer-checkable description of the program
 - 2 Model Checking proving (or refuting) the program obeys this spec.
- ► Theoretically many of FM algorithms are undecidable or at least \mathcal{NP} -Hard
 - In practice these scale surprisingly well
 - i.e. programs terminate or scale beyond n = 35

In Defense of FM

- A complaint of formal methods is it's too expensive
- ► FM isn't all-or-nothing
 - Consider a type checker
 - Static analyzers can be part of software engineering workflow
 - e.g. Cl, red squiggly lines in Eclipse

Ariane 5 - \$500 million software bug: incorrectly converted 64-bit float to 16-bit integer

39 / 40

- Formalizing IEEE-754, MIL-STD-1750A, and Posits in a unified way
 - Look at floats both as bits and real numbers
 - Existing packages do only one (Flocq: R, SMT Solvers: bits)
 - Existing scientific codes only flip one switch to use float or double; can we do better?
 - SIMD transformations are rigid, GCC -03 is not rigid enough
- ► Quameleon multi-ISA binary analysis at Sandia

Formerly Known as the Ountiler