Verification Techniques for Low-Level Programs
Samuel D. Pollard
UNIVERSITY OF

O OREGON

Computer and Information Science

February 21, 2019



Outline -

Introduction

Formal Methods in Practice
Intermediate Representations
Floating Point Arithmetic
SIMD Parallelism

[@ Conclusion

UNIVERSITY OF

OREGON

O

2/40



Why These Three Topics? pr(
Parallelism

category distributed high-level
5 theory systems language
5
O
o
E real shared memory intermediate
o analysis parallelism representation
(@)

numerical .

. ——8§5——  vectorization assembly
analysis

UNIVERSITY OF

OREGON 3/40

O




|

HPCL

Introduction

UNIVERSITY OF

OREGON 4/40



What is Formal Methods? (In 5 Seconds) Pal

Using math to make sure your computer does what it's supposed to do

UNIVERSITY OF

OREGON

O

5/40



Intro

What is Formal Methods? .!EZE'

» The application of theoretical computer science, math, type theory,
logic, and even philosophy to computer programs

» Formal methods is like a coin with two sides
Designing a machine-readable and machine-checkable formal
specification
m English is always informal
m e.g. logical formula, program in Coq, or even the type of a function
Ensuring software obeys this specification.
m {Type, model, satisfiability, proof} checker

» In math, the parallel is theorem and proof.
This parallel is a very deep result of computer science

UNIVERSITY OF

OREGON

O

6/40



Intro

Why Do We Need Formal Methods?

» Therac-25 - race
condition gave
100x radiation
dosage

» Patriot Missile bug
- accumulating

timing error killed
28

uuuuuuuuuu

oo

HPCL

7/40



Intro

A Story of Paradoxes ol

» Liar's Paradox: “This statement is false.”
» The issue lies with self-reference

» Analogue in A-calculus is Curry’'s Paradox

UNIVERSITY OF

OREGON

O

8/40



Intro

Simply Typed Lambda Calculus (STLC) ol

STLC Grammar

to=x|tt]| ATt
» By Alonzo Church in 1940 vi=AX:iT.t
» Invented to prevent paradoxes of 7 :=bool |int| 7 — 7
Fo=0|Mx:7

untyped A-calculus

» STLC is total so is not Turing Complete )
e.g. type differently fst and True

(Ax :7. Ay : 7. x) : bool

O GriGoN Do



Intro

Logics el

» Propositional Logic: <— ,A,V, = ,—
NP-Complete: given a formula, we can determine satisfiability in at most
exponential time
Rules of chess in 100,000 pages

» First-Order Logic: V, 3
Undecidable: Given a formula, we cannot in general determine satisfiability
Rules of Chess in 1 page

UNIVERSITY OF

OREGON

O

10/ 40



Intro

Canonical Verification Techniques ol

» Hoare Logic
» Satisfiability Modulo Theories (SMT)
» Abstract interpretation

uuuuuuuuuu

11/40



Intro

Hoare Logic g

» Has the form {P}Q{R}

» Specify predicate transformer semantics
» Compute weakest {x > 5} x :=x %2 {x > 10}

precondition /strongest postcondition

UNIVERSITY OF

OREGON -

O




Satisfiability Modulo Theories (SMT) D1l

» Satisfiable (Integers):
X+2y=20Ax—y =2
» Unsatisfiable (Integers):

» Propositional logic + (x>0)A(y>0)A(x+y<0)
theory of

_ . » Unsatisfiable (Float) but long runtime
» Matrix Multiplication of

formal methods (—2<x<2N(-2<y<2)
AN-1<z<1)
ANx<y)ANy+z<x+2)

uuuuuuuuuu

O ‘ OREGON 13/40



Intro
-

Abstract Interpretation

O

» Sound static analysis

UNIVERSITY OF

OREGON

Static analysis -
discovering properties
of a program without
executing it

Sound - no false
negatives

3. Basic GC semantics Basic GCs are primitive abstractions of
properties. Classical examples are the identity abstraction S[1[{(C,
O)]] = (c, ©) % (C, C), the top abstraction S[T[(C,

C), T 2 (¢, C) )‘Q:T (C, C), the join abstraction S[U[C]]
£ (p(p(C)), ©) === (p(C),C) witha”(P) £ U P,7(Q) £

©

©(Q), the complement abstraction S[-[C]] £ (p(C), C) %
(p(C), D), the finite/infinite sequence abstraction S[e[C]] =
(p(C™), >”<:,<g)(0) C)witha™(P)2 {0, |0 € PAi €
dom(o)} andv (Q) 2 {o€C>™|Vicdom(s):0; € Q}, the
transformer abstraction S[~[C1, C2]] £ (p(C1 xC2), C) 47:w,
(p(C1) L ©(Cs), C) mapping relations to join-preserving
transformers with o™ (R) 2 AX «{y | 3z € X : (x, y) € R},
“(9) & {(z, v) | ¥ € g{z})}. the function abstraction
S[=[C1, Ca]] £ (p(C1 = C2), C) === (p(C1) = 9(C2),
&) with o™ (P) XX {f(z) | f € P Az € X}, v (g) £
{feCi— C | VX € p(Cy) : Yz € X : f(x) € g(XX)},

HPCL

14 /40



Intro

Abstract Interpretation

O

float unsafe(float x) {
if (x==0.0)
return 0.0;
else
return 1.0 / x;

UNIVERSITY OF

OREGON

HPCL

» Create an abstract domain
» Define semantics on abstract
domain

» “Interpret”’ your program to see
what values pop out

For example, we wish to ensure
we never divide by zero.

15/40



Intro

Abstract Interpretation ol

» Abstract Domain:
ﬁoia;t(;is:geg;ioat x) { nnz / | = Handled?
return 0.0; 0 P .
o nnz | flt X

' NaN | NaN X
X return 1.0 / x; 400 | O X
flt | flt

uuuuuuuuuu

O GriGoN e



Intro

Abstract Interpretation ol

#include <math.h>
float mostlysafe(float x) {

if (x==0. || isnan(x) || isinf(x))
return 0.;
else
return 1. / x;
}
O  OREGON

17 /40



Intro

Abstract Interpretation ol
#include <math.h> » Abstract Domain:
float mostlysafe(float x) { nnz / | = Handled?
if (x==0. || isnan(x) || isinf(x)) 0 Fo00 v
return 0.; nnz | flt X
else NaN | NaN v
return 1. / x; +oo | 0 Ve
} flt | flt
O | GREGON Y




Intro
-

Abstract Interpretation HPCL

#include <math.h>
float reallysafe(float x) {

// Cast to int without changing bits » Abstract Domain:
unsigned long ¢ = *(unsigned longx) &x; nnz / | = Handled?
if (isnan(x) || isinf(x) || 0 +oo v
(0x80000000 <= c && c <= 0x80200000) || nnz | flt v
(0x00000000 <= c && c <= 0x00200000)) NaN | NaN v
return O.; +oo | 0 v
else flt | flt

return 1. / x;

UNIVERSITY OF

OREGON 18 /40

X
O




FM in Practice

el

HPCL

Formal Methods in Practice

UNIVERSITY OF

OREGON 19 /40



Design Decisions el

To what degree of confidence must the software be guaranteed?
What tools can be used to accomplish 17

How much time can a human spend on 2?7 How much time can a
computer spend on 27

UNIVERSITY OF

OREGON

O

20 /40



o

Degree of Confidence ety

» Formal methods is not a silver bullet

More like a flu vaccine “ .
Beware of bugs in the above
» Security vulnerability found in the WPA2 code; | have only proved it
WiFi standard which had been proven correct, not tried it’ — Donald
secure Knuth

» Vulnerability related to temporal property
which WPA2 did not specify

UNIVERSITY OF

OREGON 21 /40

O




Properties You Might Care About pr(

int ipow(int x, int n) {
if (n==0) return 1;

» Basic safety guarantees return x * ipow(x,n—1);
Will ipow work for all ¥
integers? int main() {
Can be handled (mostly) int a,b,c,n;
automatically by SMT n=3c¢c=0;
solvers while (1) {
ct++;

for (a=1;a<c; at++) {
for (b =1; b <c; b++) {
if (ipow(a,n)+ipow(b,n)==ipow(c,n))
return 0O;

UNIVERSITY OF } } } }

OREGON

O

22 /40



Properties You Might Care About pr(

O

» Does this program test all
combinations of a, b, and

c?

UNIVERSITY OF

OREGON

Requires loop invariants
and annotating code
Proves partial
correctness; if the code
terminates, then we get
the right answer

int ipow(int x, int n) {
if (n==0) return 1;
return x * ipow(x,n—1);
}
int main() {
int a,b,c,n;
n=3;,c=0;
while (1) {
ct++;
for (a=1;a<c; at++) {
for (b =1; b <c; b++) {
if (ipow(a,n)+ipow(b,n)==ipow(c,n))
return 0O;

}r1}

23 /40



Properties You Might Care About pr(

» Does this program
terminate?

Until 1995, no one knew

UNIVERSITY OF

OREGON

O

int ipow(int x, int n) {
if (n==0) return 1;
return x * ipow(x,n—1);
}
int main() {
int a,b,c,n;
n=3;,c=0;
while (1) {
c++;
for (a=1;a<c; at++) {
for (b =1; b <c; b++) {
if (ipow(a,n)+ipow(b,n)==ipow(c,n))
return 0O;

}r1}

24 /40



Tools for Formal Methods -

uuuuuuuuuu

Nadia Polikarpova
Follow v
@polikarn

software engineer: linear is fast, quadratic is
slow

complexity theorist: P is fast, NP-hard is
slow

verification researcher: decidable is fast,
undecidable is slow

8:47 AM - 13 Dec 2018

378 Retweets 1,441lkes MFGPH PO O @@ @ 25/ 40



Tools for Formal Methods ol
.Static Analyzers Holy Grail
» Tradeoff between
automation and strength of
what can be verified -
o
» What prevents us from k= Model EheCkers
reaching the Holy Grail is £
the fundamental limit of 2 _
. Deductive Program Provers
computation °
» Rice's Theorem Domain-Specific Provers
°
P ty-Based Testi
° roperty-based TESHNE b oof A‘ssistants
UNIVERSITY OF St th fCI 1
O Srpaer rength of Claims vo)a0




Notable Proof Assistants ol
System de. B“.“J” Tactics
criterion
Coq v v » Coq - Proved the four color theorem
HOL v X .
ACLD X 7 » HOL/Isabelle - Intel and Cambridge
PVS / v/ » ACL2 - UTexas’, also (probably) AMD
Twelf X X » PVS - Used at NASA
F* v v » F*, Lean - Microsoft
NuPRL X v » NuPRL - Cornell; oldest listed here; 1984
Agda X X
Lean v v
O | 6rREGON

27 /40



The Martian

O

UNIVERSITY OF

OREGON

FM in Practice

CREW DATA TRANSFER

m(§ {  DATADUMP

[Temma DUII"I_S1UEb_llran_pUb_li—.‘L
("pz* "pxl1" "x" *1" "y "expt(1+pxiL,ji1)"))
(("2" (rewrite "expt _gtl boundl” -1)
((~2" (assert) nil nil)) nil))
nil))
nil))
nil))
nil))
nil)




el

HPCL

Intermediate Representations

UNIVERSITY OF



Verifying IRs el

» WebAssembly - Machine-checkable semantics
» Vellvm - LLVM in Coq
» BAP - Binary analysis platform

uuuuuuuuuu

30/40



|

HPCL

Floating Point Arithmetic

UNIVERSITY OF

OREGON 31/40



Some Quirks of Floating Point Arithmetic .!.FZE'

» Tension between “floats as bits” and “floats as reals”
» Having the same bit pattern is neither necessary nor sufficient for two IEEE
754 floats to be considered equal

0...0and 10...0 represent —0 and +0 which are equal
NaNs are all not equal to each other

UNIVERSITY OF

OREGON

O

32/40



Formalizing Real Numbers el

» Coq library Flocq
» Doesn't concern itself with bit-level representations

» No maximum exponents!

UNIVERSITY OF

OREGON

O

33/40



Parallelism

HPCL

SIMD Parallelism

UNIVERSITY OF

OREGON 34,40



Parallelism

Why is This Challenging? el

» Increasing vector widths means more complex CFG, difficult to
automatically (and hand) vectorize

» Code transformations may assume associativity (too aggressive)
» Code transformations may match scalar code (too conservative)

UNIVERSITY OF

OREGON 35/40

O




Conclusion

HPCL

[@ Conclusion

UNIVERSITY OF

OREGON 36 /40



Conclusion

Conclusion

—————— |

» Formal Methods are two things:

&
A
A
Al
i
I
i
N
i
H

Formal Specification - creating unambiguous,
computer-checkable description of the program

Model Checking - proving (or refuting) the
program obeys this spec.

» Theoretically many of FM algorithms are
undecidable or at least A"P-Hard
In practice these scale surprisingly well
i.e. programs terminate or scale beyond n = 35

UNIVERSITY OF

OREGON

O




In Defense of FM .!:'c!'

» A complaint of formal methods is it's
too expensive
» FM isn't all-or-nothing
Consider a type checker
Static analyzers can be part of
software engineering workflow
e.g. Cl, red squiggly lines in Eclipse

Ariane 5 - $500 million software
bug: incorrectly converted 64-bit
float to 16-bit integer

UNIVERSITY OF

OREGON 38/40

O




Conclusion

ASKING AIRCRAFT DESIGNERS [ | ASKING BUILDING ENGINEERS | H ASKING SOFTWARE .I-"l'
HPCL

XKCD Tax ABOUT AIRPLANE SAFETY: ABOUT ELEVATOR SAFETY: ENGINEERS ABOUT
NOTHING 15 EVER FOOLPROOE, | ELEVATORS ARE PROTECTED By | LCOMPUTERIZED VOTING:
BUT MODERN AIRLINERS ARE. | MULTIPLE. TRIED-AND-TESTED )
INCREDIBLY RESILIENT, FLYING IS | FAILSAFE MECHANISMS. THEYRE | THATS TERRIFYING.
THE SAFEST WAY O TRAVEL. | NEARLY INCAPABLE OF FALLING. (
\ % \ %
VAT, REALLY? THEY SAY THEY'VE FIXED IT WITH
DON'T TRUST VOTING SOFTWARE. AND DON'T SOMETHING CALLED “BLOCKCHAIN
LISTEN TO ANYONE. WHO TELLS YOU ITS SAFE. APAAALI!
WHY? WHATEVER THEY SOLD
T DONT QUITE KNOW HOW TO PUT THIS, BUT YOU, DON'T TOUCH IT.
OUR ENTIRE FIELD IS BAD AT WHAT LE DO, BURY IT IN THE DESERT. )
O s AND IF YOU RELY ON US, EVERYONE WILLDEE. \ UEAR GLOVES,
OREGON A/ N\ N VN / 39 /40




Conclusion

Future Work .!:'c'!'

Formerly Known as the Qunpler

» Formalizing IEEE-754, MIL-STD-1750A, and
Posits in a unified way
Look at floats both as bits and real numbers
Existing packages do only one (Flocq: R, SMT
Solvers: bits)
» Existing scientific codes only flip one switch - to
use float or double; can we do better?

» SIMD transformations are rigid, GCC -03 is not

The Qumeleon
Depiler

rigid enough with QIL
> Quameleon - multi-ISA binary analysis at Sandia 0 RLY’ el b Follnd
O GREGON -




	Introduction
	Formal Methods in Practice
	Intermediate Representations
	Floating Point Arithmetic
	SIMD Parallelism
	Conclusion

