Formal Methods-based Certification Frameworks for Scientific
Computing Applications

Ariel Kellison| 12, |Geoff Hulette 2, |John Bender| 2, Samuel D. Pollard 2, and Heidi K. Thornquist, 2

LCornell University, Ithaca, New York
2Sandia National Laboratories, Livermore, California

October 14, 2021

A significant barrier to certifiable, trustworthy computational science at the De-
partment of Energy is the prevalent belief that proofs of accurate correspondence
between an implementation and a desired conceptual model along with its solution
are intractable. The current verification paradigm for computational science at the DOE there-
fore relies on the absence of proof of incorrectness [7]; this paradigm is woefully behind common
verification practices employed in industry and academia, and ultimately means that national se-
curity and policy decisions based on computational models lack the highest assurances possible.

To address the absence of formal guarantees of correctness of critical computational models
and simulations across DOE labs, we suggest the development of end-to-end formal methods-based
certification frameworks for scientific computing applications. These frameworks can bridge the
gap between conceptual models and their corresponding high-performance implementations.

Numerous examples from academia and industry provide strong evidence suggesting that the
development of such frameworks is possible, and that these frameworks can be used to provide
correctness guarantees for large and complex systems. Below, we provide some details on for-
mal methods-based certification frameworks relevant to each of the three areas of verification [7]
fundamental to trustworthy computational science.

Numerical algorithm verification

The current method employed for numerical algorithm verification across Department of Energy
labs relies on the accumulation of evidence from test cases. The validity of this evidence rests on the
assumption of a representative set of test cases and aims to prove that the implementation behaves
according to an informal specification of correct behavior. In contrast, formal-methods based
approaches that are extensively used in industry [6] enable the development of mathematically
precise, verifiable program specifications. Furthermore, machine-checkable proof certificates of the
correctness and numerical accuracy of imperative implementations of numerical algorithms have
been demonstrated [T, §.

Software Quality Assurance

The complexity of computational science models and simulations increases the likelihood of human
errors and leaves the software development cycle vulnerable to adversarial agents. Before trusting

mailto:ak2485@cornell.edu
mailto:ghulett@sandia.gov
mailto:jmbende@sandia.gov
mailto:spolla@sandia.gov
mailto:hkthorn@sandia.gov

the results of critical models and simulations, we need to establish extremely high confidence that
each component of the system on which the simulation relies, from hardware to software, is correct.
To that end, formal methods used in industry enable the precise definition of program behavior,
and ensure that records of expected behavior are consistent throughout the software development
stack [0 6]. Fully verified software stacks that account for the behavior of underlying hardware have
been demonstrated [4]. Furthermore, recent work has demonstrated that machine-checkable proof
certificates of correctness for small system components can be composed to ensure the correctness
of larger complex systems [3].

Solution Verification

Given a set of continuous ODEs or PDEs, solution verification entails a quantitative study of how
accurately a discrete numerical implementation represents the original set of continuous equations
and its qualitative behavior. Popular opinion in the computational science community is that
formal mathematical proofs of compatibility between a numerical implementation and a continuous
model are intractable in practice [7]. However, demonstrations of such proofs have appeared in the
literature [2]. Notably these proofs come equipped with machine-checkable proof certificates that
can be integrated with the methods proposed for numerical algorithm verification and software
quality assurance.

References

[1] Andrew W. Appel and Yves Bertot. C floating-point proofs layered with VST and Flocq.
Journal of Formalized Reasoning, 2020.

[2] Sylvie Boldo, Frangois Clément, Jean-Christophe Filliitre, Micaela Mayero, Guillaume
Melquiond, and Pierre Weis. Trusting Computations: A Mechanized Proof from Partial Differ-
ential Equations to Actual Program. Computers and Mathematics with Applications, 2014.

[3] Ronghui Gu, Zhong Shao, Hao Chen, Xiongnan Wu, Jieung Kim, Vilhelm Sjéberg, and David
Costanzo. CertiKOS: An Extensible Architecture for Building Certified Concurrent OS Kernels.
In USENIX Symposium on Operating Systems Design and Implementation, OSDI’16, 2016.

[4] Chris Hawblitzel, Jon Howell, Jacob R. Lorch, Arjun Narayan, Bryan Parno, Danfeng Zhang,
and Brian Zill. Tronclad Apps: End-to-End Security via Automated Full-System Verification.
In USENIX Symposium on Operating Systems Design and Implementation, OSDI’14, 2014.

[5] K. Rustan M. Leino. Dafny: An Automatic Program Verifier for Functional Correctness. In
Logic for Programming, Artificial Intelligence, and Reasoning, 2010.

[6] Chris Newcombe, Tim Rath, Fan Zhang, Bogdan Munteanu, Marc Brooker, and Michael
Deardeuff. How Amazon Web Services Uses Formal Methods. Commun. ACM, 2015.

[7] William L. Oberkampf and Christopher J. Roy. Verification and Validation in Scientific Com-
puting. Cambridge University Press, 2010.

[8] Tahina Ramananandro, Paul Mountcastle, Benoit Meister, and Richard Lethin. A Unified Coq
Framework for Verifying C Programs with Floating-Point Computations. CPP 2016, 2016.

