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1 Introduction

The correctness and security of science codes and the national cyber infrastructure is increasingly in
doubt. The considerable investment already made in verification and validation (V&V) of scientific
simulations can be extended in new directions to help address these needs. Building on traditional
V&V to formally “correct by construction” [1] techniques in code development and coupling new
AI techniques to discover security and correctness issues in existing codes is an opportunity to
address these problems.

To make scientific computing secure we must first be able to understand its behavior. We envi-
sion a future where – given a problem, a set of constraints, and a target – we leverage
Machine Learning (e.g., adversarial ML, model building, reinforcement learning, ge-
netic programming) and formal methods to infer the models, heuristics, tests, and/or
policies that govern and optimize the computational science workflows needed for
DOE and the NNSA’s mission needs. This understanding will provide the foundation
for the rigorous cyber-security guarantees on mission codes. This need for automated
workflows is increasingly urgent as V&V becomes the largest expenditure in computational science
–Software must be secure as well as correct. To make rigorous levels of trust possible and V&V
expenditures more manageable, our proposed workflow would analyze the behavior of existing sci-
entific applications and use learned models to derive formal specifications of their behavior. At the
compiler level, for example, the workflow could be used to learn heuristics for better code porta-
bility, while at the system level, the workflow could suggest directed cyber-security tests or more
resilient resource management policies. Formal methods-based derivations based on learned system
behavior models would enable a full-stack “Model Based System Engineering” (MBSE) workflow
that provides greater assurance of scientific correctness and cyber-security in current and future
systems and scientific applications.

2 Necessary Research

This combination of Machine Learning and Formal Methods techniques make it possible to under-
stand and verify cyber-security guarantees on scientific applications.
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2.1 New types of AI research for scientific cybersecurity

Effective application of “black box” Model Learning, used when analysis of source code is imprac-
tical, will require tens of thousands of input/output traces of the application under analysis. In
cases where production source code is available, “white box” Model Learning may be used and
the source code itself (and analyses derived thereof) comprises another data set. These artifacts
will provide the foundation for the Model Learning data set. This data set will form the “System
Under Learning” upon which we will apply active automata learning techniques such as Angluin’s
Algorithm to derive formal specifications for existing artifacts.

This research would lead to AI architecture for Model Learning of scientific applications and
hardware behaviors from application source code and hardware artifacts.

2.2 New types of formal methods

Using these generated models it would be possible to manage the complexity of providing cyber-
security and privacy guarantees for scientific software using advances in automated theorem proving
and proof assistants.

HPC computing applications have grown in complexity to both utilize the exponential increases
in computing power as well as achieve the most efficient use of available hardware. Both of these
lead to code which is nearly impossible for one person to understand its full behavior, which in
turn makes verification and validation out of reach for most scientific computing teams.

Proof assistants such as Coq and automated theorem proving tools such as Satisfiability Modulo
Theories (SMT) potentially make this complexity tractable by providing powerful automation and
proof engineering tools to verify software security properties and to create programs which are
provably correct to their specification.

However, the greatest strength and most difficult challenge of advanced theorem proving is that
it makes no assumptions about a given system, scientific or otherwise, and so all behavior must be
completely specified before a theorem prover will guarantee a proof is correct.

The work to provide the underlying foundation to prove scientific computing systems secure
and correct is ongoing. Two relevant examples are those for real analysis [2] and floating-point
arithmetic [3], though there are many such libraries in areas such as cryptography or other high-level
mathematics.
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