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Abstract
The pitfalls of numerical computations using floating-point
numbers are well known. Existing static techniques for float-
ing-point error analysis provide a single upper bound across
all potential values for a floating-point variable. We present a
new abstract domain for floating-point error analysis which
describes error as a function of each variable’s value. This
domain accurately models the nature of floating-point error
as dependent on the magnitude of its operands. We use this
domain to effectively handle exceptional values (e.g., NaN),
branch instability, and binade boundaries. The granular anal-
ysis provides users with a detailed understanding of forward
error. We implement the abstract domain in a tool that sup-
ports analyzing a subset of C including conditionals, arrays,
and arithmetic operators. We compare our implementation
with Fluctuat and show how our analysis can improve the
error bounds for subranges of possible outputs.

CCS Concepts: • Theory of computation→ Verification
by model checking; • Mathematics of computing → Nu-
merical analysis; Interval arithmetic; • Software and its
engineering→ Model checking.

Keywords: abstract interpretation, floating point, roundoff
error, step functions
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1 Introduction
Floating-point (FP) numbers are a ubiquitous, imperfect rep-
resentation of the real numbers. This imperfection results
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Figure 1. Floating-point error for an approximation of sin(𝑥)
from FPBench [7]. The blue shaded region shows a histogram
of the error from randomly-sampled inputs. Binade bound-
ries are vertical lines and green segments show our analysis.

in the difference between a numerical computation and its
infinite-precision counterpart—its floating-point error. This
difference can produce real-world consequences [15].

Various static techniques have been developed for analyz-
ing FP error [1, 10, 16, 19, 24, 25]. These techniques provide a
sound upper bound on the maximum error a variable can in-
cur during the execution of a program. While useful, a single
error bound ignores a key property of FP: a program’s error is
a complex function of its inputs, but in general, floating-point
error depends on the relative magnitude of the operands.

It is often more intuitive to measure relative error1. How-
ever, this is not without issues. Relative error analysis is
typically more challenging to compute and is undefined at 0.

Noting these challenges, we model FP error as a function
which at all values overapproximates the true error. We then
build an abstract domain [5] by modeling absolute error as a
step function. The step function is built by splitting the input
domain along every binade, then merging these intervals.
Figure 1 shows the effect that crossing binade boundaries
has on the error of an approximation of sine as well as our
analysis.
With this technique, we gain benefits from both relative

and absolute error analysis. This level of granularity allows
1For a real number 𝑥 and its approximation 𝑥 , the relative error is |𝑥 −𝑥 |/𝑥
versus absolute error |𝑥 − 𝑥 | .
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us to improve error analysis for sub-ranges of an input’s
domain, allowing the analysis to take advantage of properties
which may not hold in all cases (e.g., no divison by zero).

We implement our abstract domain as a static analyzer2
which supports a subset of C geared towards embedded sys-
tems. Our tool supports analysis of elementary FP operations,
conditionals, and arrays, and takes as input a C function and
acceptable ranges for its FP input variables. For each output,
our analyzer builds a step function consisting of worst-case
errors partitioned on a set of intervals. These intervals start
along binade boundaries, but transform along with the C
program’s semantics. This approach allows a detailed analy-
sis of a function’s behavior and can discover inputs which
lead to large error or exceptional behavior. We demonstrate
our approach on a set of example problems which closely
model the types of numerical software used in safety-critical
systems and compare our results with the Fluctuat static
analyzer [16].

2 Floating-Point Error
FP error arises from the inability to represent all real num-
bers in finite precision. Unrepresentable values for a format
must be rounded to a representable value. The IEEE 754 stan-
dard [26] defines five different rounding schemes. This work
assumes the most common: round-to-nearest, ties break to
even, but it could be easily extended to other modes.
Roundoff error is often described using units in the last

place (ulp). For some real number 𝑟 ∈ R, ulp(𝑟 ) represents
the distance between the two FP numbers nearest to 𝑟 . For
round-to-nearest, roundoff error can be bounded with

|𝑟 − 𝑅(𝐹 (𝑟 )) | ≤ 1
2
ulp(𝑟 ).

For floating point numbers F, 𝑅 : F → R and 𝐹 : R → F are
partial functions which convert between real and FP num-
bers. In this paper, we apply ulp to floating-point numbers,
implicitly converting them to reals. The set of values that are
representable with the same (radix-2) exponent (and hence
have the same ulp) is called a binade.
Branch instability is a class of FP errors that can have a

large impact on total error. Branch instability occurs when a
branching condition (e.g., an if-statement) evaluates differ-
ently between a finite-precision FP context and an infinite
precision context. For example, if the branching condition
is 𝑥 < 0.1 and 𝑥 = 0.0995 in finite-precision, but 𝑥 = 0.1
with infinite-precision, the program will take two different
execution paths and cause arbitrarily large error.
We note the true behavior of FP error is complex: some

error terms magnify each other, others cancel out, and others
still have undefined error (such as underflow). Our work,
like others, does not attempt to fully describe the error of FP
arithmetic.

2available at https://github.com/anthonydario/fp-analysis

𝐴 ::=𝑥 | 𝑓 | 𝑖 | 𝑥 [𝐴] | 𝐴 ⊙ 𝐴

𝐵 ::= true | false | !𝐵 | 𝐴 #< 𝐴

𝑆 ::= 𝑥 = 𝐴 | 𝑥 [𝐴] = 𝐴 | 𝑆 ; 𝑆 | if 𝐵 then 𝑆 else 𝑆

Figure 2. Syntax of the analyzed subset of C.

J𝐴K : M → V

J𝑥K𝑚 =𝑚 𝑥

J𝑓 K𝑚 = (𝑓 , 0)
J𝑖K𝑚 = 𝑖

J𝑥 [𝐴]K𝑚 = (𝑚 𝑥) (J𝐴K𝑚)
J𝐴1 ⊙ 𝐴2K𝑚 = J𝐴1K𝑚 ⊙ J𝐴2K𝑚

(a) Concrete semantics of arithmetic expressions.

J𝐵K : P(M) → P(M)
J𝑡𝑟𝑢𝑒K𝑀 =𝑀

J𝑓 𝑎𝑙𝑠𝑒K𝑀 = ∅
J!𝐵K𝑀 = {𝑚 | 𝑚 ∈ 𝑀 ∧𝑚 ∉ J𝐵K𝑀}
J𝐴1#< 𝐴2K𝑀 = {𝑚 | 𝑚 ∈ 𝑀 ∧ J𝐴1K𝑚 #< J𝐴2K𝑚}

(b) Concrete semantics of boolean expressions.

J𝑆K : P(M) → P(M)
J𝑥 = 𝐴K𝑀 = {𝑚[𝑥 ↦→ J𝐴K𝑚] | 𝑚 ∈ 𝑀}
J𝑥 [𝐴1] = 𝐴2K𝑀 =

{𝑚
[
𝑥 ↦→ (𝑚 𝑥) [J𝐴1K𝑚 ↦→ J𝐴2K𝑚]

]
| 𝑚 ∈ 𝑀}

J𝑆1; 𝑆2K𝑀 = J𝑆2K(J𝑆1K𝑀)
Jif 𝐵 then 𝑆1 else 𝑆2K𝑀 =

J𝑆1K(J𝐵K𝑀) ∪ J𝑆2K(J!𝐵K𝑀)
∪ {𝑚1 [𝑥 ↦→ (𝑓1, |𝑓1 − 𝑓2 | + 𝜖2)] |

∀𝑚1 ∈ J𝑆1K(U 𝑀),∀𝑚2 ∈ J𝑆2K(U 𝑀),∀𝑥 ∈𝑚1,

(𝑓1, 𝜖1) =𝑚1 𝑥, (𝑓2, 𝜖2) =𝑚2 𝑥}
∪ {𝑚1 [𝑥 ↦→ (𝑓1, |𝑓1 − 𝑓2 | + 𝜖2)] |

∀𝑚1 ∈ J𝑆2K(U 𝑀),∀𝑚2 ∈ J𝑆1K(U 𝑀),∀𝑥 ∈𝑚1,

(𝑓1, 𝜖1) =𝑚1 𝑥, (𝑓2, 𝜖2) =𝑚2 𝑥}

(c) Concrete semantics of statements.

Figure 3. Concrete semantics.

3 Language and Concrete Semantics
We first define the language under analysis and its concrete
semantics. Our concrete semantics captures all possible FP
values along with their precise errors.

We analyze a subset of the C language focused on numer-
ical programs shown in Figure 2. The subset includes: vari-
ables (𝑥), double-precision FP values (𝑓 ), integer values (𝑖),

https://github.com/anthonydario/fp-analysis
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arrays, and elementary arithmetic operators ⊙ ∈ {+,−, ∗, /}.
Integers are included to index arrays. Boolean expressions 𝐵
consist of true, false, numerical comparisons (written #< ∈
{≤, <,==, >,≥}), and negation !𝐵. Statements 𝑆 allow for as-
signment, composition with semicolons, and control flow
with if-statements.

The concrete reachability semantics of expressions are
given in Figure 3. We model program states as memory,
M : X → V, mapping variable names (X) to values (V).
Values may be integers, double-precision FP values, or arrays.
FP values are modeled as a tuple (𝑓 , 𝜖) of a FP value, 𝑓 , and a
rounding error 𝜖 . This work only considers double-precision,
but the analysis can easily be extended to other FP formats.
We model arrays as functions from integers to numerical
values and allow reading and writing from array indices.

The semantics of arithmetic expressions J𝐴K : M → V
returns the integer or FP value (with error incurred) of the
expression given a specific program state.
Boolean expressions J𝐵K take as input a set of possible

program states and return the subset of states which satisfy
the condition. In this way, the semantics of boolean expres-
sions filters memory for the states that satisfy the condition.
For true and false this is all input states and the empty set,
respectively. Comparisons (𝐴1#< 𝐴2) filter the input set by
states that evaluate to true.
Figure 3 shows the concrete reachability semantics of

statements J𝑆K. Assignment (𝑥 = 𝐴 and 𝑥 [𝐴1] = 𝐴2) updates
the left-hand side in every state. We write 𝑚[𝑥 ↦→ 𝑦] to
mean the function 𝑚 updated so that input 𝑥 produces 𝑦.
Composition (𝑆 ; 𝑆) gives the possible states after executing
the first statement then the second statement.
To correctly capture the effect of branching on error we

need to account for stable and unstable executions of either
branch. We take the union of the memory produced by both
cases. The first two terms filter the memory on the condition
and its negation then the appropriate branch is explored. Un-
stable paths down the “then” and “else” branches are handled
by the next two terms. TheU : P(𝑀) → P(𝑀) function fil-
ters for memory that would produce branch instability. Then,
variables in the memory of the executed branch have their
error updated to difference between the executed branch’s
value and the unexecuted branch’s value plus error.

4 Abstract Domain and Semantics
We define an abstract semantics which gives a sound, com-
putable overapproximation of the concrete semantics defined
in the previous section. We use abstract memory as an ab-
straction of the set of possible program states from the con-
crete semantics. Specifically, abstract memoryM♯ : X → V♯

maps variables to abstract values which overapproximate
the values a variable can take in a set of states in the con-
crete semantics. We describe the domain of these abstract

values in § 4.1 and the abstract semantics of the language
over abstract values in § 4.2.

4.1 Abstract Domain
We track FP error alongside a variable’s possible values in a
tuple called a segment that consists of an interval (written
𝑥 = [𝑥− ;𝑥+] ∈ I) of possible values and a positive number
(E) that overapproximates the error:

S : (I × E).
The interval and error bounds are represented by FP numbers.
While the bounds may not always be representable, they can
be overapproximated by a judicious use of rounding.

To allow us to increase precision for binades closer to 0 we
partition S into multiple segments. The multiple segments
describe a piecewise-step function of FP error. We define
step functions as sets of segments:

P : P(S).
Before our analysis computes the abstract semantics of

a program, it first converts variables to their abstract value
using the abstraction functions 𝛼F : (F × R) → P and
𝛼Z : Z → I which map FP constants (and associated error)
to single-segment step functions and integers to intervals,
respectively:

𝛼F (𝑓 , 𝜖) = ( [𝐹↓ (𝑓 ); 𝐹↑ (𝑓 )],
1
2
ulp(𝑓 )) (1)

𝛼Z (𝑖) = [𝑖; 𝑖] . (2)

For FP numbers we round the written number to the two
nearest representable numbers using 𝐹↓ : F → F and 𝐹↑ :
F → F to produce the successor and predecessor of the FP
value. This allows us to account for written values that are
unrepresentable. Function parameters have unknown values
so their range must be specified by the user. Note that (1)
bounds the error by 1/2 ulp.
In the abstract domain, arrays are maps of indices to ab-

stract values, A : I → V♯. However, because integers are
intervals it is possible the result of an indexing expression is
an interval. To index an array with an interval, we take the
union of the values from each index in the interval.

Our abstract domain is then

V♯ : P ∪ I ∪ A.

4.2 Abstract Semantics
Figure 4 defines the abstract semantics J·K♯ over the same
syntax as Figure 2. We describe the semantics of each syn-
tactic forms in turn.

4.2.1 Arithmetic Expressions. Figure 4a shows the ab-
stract semantics of arithmetic expressions. Accessing vari-
ables or arrays involves performing a memory lookup. Con-
stants are mapped to abstract values using the abstraction
functions defined in Section 4.1. For arithmetic expressions
we define arithmetic operators over abstract values. We use
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J𝐴K♯ : M♯ → V♯

J𝑥K♯𝑚♯ =𝑚♯ 𝑥

J𝑓 K♯𝑚♯ = 𝛼F (𝑓 )
J𝑖K♯𝑚♯ = 𝛼Z (𝑖)
J𝑥 [𝐴]K♯𝑚♯ = (𝑚♯ 𝑥) (J𝐴K♯𝑚♯)
J𝐴1 ⊙ 𝐴2K♯𝑚♯ = J𝐴1K♯𝑚♯ ⊙V♯ J𝐴2K♯𝑚♯

(a) Abstract semantics of arithmetic expressions.
J𝐵K♯ : M♯ → M♯

JtrueK♯𝑚♯ =𝑀♯

JfalseK♯𝑚♯ = ⊥M♯

J!𝐵K♯𝑀♯ =𝑚♯ [𝑥 ↦→ F¬𝐵 (𝑚♯ 𝑥) | 𝑥 ∈𝑚♯]
J𝐴1#< 𝐴2K♯𝑀♯ =𝑚♯ [𝑥 ↦→ F(𝐴1#< 𝐴2 ) (𝑚♯ 𝑥) | 𝑥 ∈𝑚♯]

(b) Abstract semantics of boolean expressions.

J𝑆K♯ : M♯ → M♯

J𝑥 = 𝐴K♯𝑚♯ =𝑚♯ [𝑥 ↦→ J𝐴K♯𝑚♯]
J𝑥 [𝐴1] = [𝐴2]K♯𝑚♯ =

𝑚♯ [𝑥 ↦→ (𝑚♯ 𝑥) [J𝐴1K♯𝑚♯ ↦→ J𝐴2K♯𝑚♯]]
J𝑆1; 𝑆2K♯𝑚♯ = J𝑆2K♯ (J𝑆1K♯𝑚♯)
Jif 𝐵 then 𝑆1 else 𝑆2K♯𝑚♯ =

J𝑆1K♯ (J𝐵K♯𝑚♯) ∪M♯ J𝑆2K♯ (J!𝐵K♯𝑚♯)
∪M♯ (𝑚♯ [𝑥 ↦→ {(𝑖𝑎, diff (𝑖𝑎, 𝑖𝑏))} |

∀𝑥, (𝑖𝑎, 𝑒𝑎) ∈ J𝑆1K♯ (U𝐵 𝑚),
(𝑖𝑏, 𝑒𝑏) ∈ J𝑆2K♯ (U𝐵 𝑚)])

∪M♯ (𝑚♯ [𝑥 ↦→ {(𝑖𝑎, diff (𝑖𝑎, 𝑖𝑏))} |
∀𝑥, (𝑖𝑎, 𝑒𝑎) ∈ J𝑆2K♯ (U𝐵 𝑚),
(𝑖𝑏, 𝑒𝑏) ∈ J𝑆1K♯ (U𝐵 𝑚)])

(c) Abstract semantics of statements.

Figure 4. Abstract Semantics.

standard interval arithmetic [20] for intervals. When mixing
intervals and step functions the step function is “cast” to an
interval by taking the union of all of its segment’s intervals
before applying interval arithmetic.
The general idea for arithmetic operators is to apply the

operator to each pair of segments from both values and then
merge any overlapping segments:

𝑋 ⊙P 𝑌 =mergeP ({𝑥 ⊙S 𝑦 | ∀𝑥 ∈ 𝑋,𝑦 ∈ 𝑌 }), (3)

where ⊙P and ⊙S are arithmetic operators for step functions
and segments respectively.

We define segment operators as a combination of interval
arithmetic, ⊙I, and an error function for propagating error:

(𝑖1, 𝑒1) ⊙S (𝑖2, 𝑒2) = (𝑖1 ⊙I 𝑖2, err⊙ (𝑖1, 𝑒1, 𝑖2, 𝑒2)),
Figure 5 shows each operator’s error function. Each con-

sists of an error propagation term and resulting rounding

err+ (𝑖1, 𝑒1, 𝑖2, 𝑒2) = 𝑒1 + 𝑒2 + 1
2 ulp(↑𝑖1 + ↑𝑖2)

err− (𝑖1, 𝑒1, 𝑖2, 𝑒2) = 𝑒1 + 𝑒2 + 1
2 ulp(↑𝑖1 + ↑𝑖2)

err∗ (𝑖1, 𝑒1, 𝑖2, 𝑒2) = ↑𝑖1𝑒2 + ↑𝑖2𝑒1 + 𝑒1𝑒2 + 1
2 ulp((↑𝑖1) ∗ (↑𝑖2))

err/ (𝑖1, 𝑒1, 𝑖2, 𝑒2) =
(↑𝑖1 )𝑒2+(↓𝑖2 )𝑒1
(↓𝑖2 )2−(↓𝑖2 )𝑒2 + 1

2 ulp(↑𝑖1/↓𝑖2)

Figure 5. Operator error propagation.

error term. The functions that propagate existing errors, err⊙ ,
are modified from the analysis in [25] to work on segments.

The ↑ : I → F and ↓ : I → F functions select the values in
the interval with the largest and smallest magnitude:

↑[𝑙 ;𝑢] =max( |𝑙 |, |𝑢 |)

↓[𝑙 ;𝑢] =
{
0 if 𝑙 < 0 < 𝑢

min( |𝑙 |, |𝑢 |) otherwise
,

To bound the error introduced by rounding, we find a
value in the interval, 𝑣 ∈ 𝑖1 ⊙I 𝑖2, that maximizes3 1

2 ulp(𝑣).
It suffices to pick the 𝑣 with the largest magnitude in the
resulting interval 𝑣 = ↑(𝑖1 ⊙I 𝑖2) as that will maximize the
FP’s exponent, which in turn maximizes the ulp function.
In the case of division, if the interval contains 0 (or small
subnormals near 0) then the error is unbounded, so we set
the error to +∞.

To bound the error propagated by the error of the operands
we pick worst-case values from the operand’s intervals to
maximize the possible error of the result.

When performing the arithmetic operations on step func-
tions defined in Equation (3), output segments may over-
lap. For example, if 𝑋 = {([2; 4], 𝑒𝑥1 ), ( [4; 8], 𝑒𝑥2 )} and 𝑌 =

{([1; 3], 𝑒𝑦)} then𝑋 −P𝑌 will consist of intervals [−1; 3] and
[1; 7], overlapping in [1; 3].
To remove this redundancywe perform amergeS : S×S →

P operation illustrated in Figure 6. The mergeS operation
takes the larger error in any overlapping subintervals:

mergeS (𝑠1, 𝑠2) =
{
{𝑠1} ∪ 𝑠2/𝑠1 if 𝑒1 > 𝑒2

{𝑠2} ∪ 𝑠1/𝑠2 otherwise
.

Here 𝑠𝑖 = (𝑖𝑖 , 𝑒𝑖 ) and 𝑠2/𝑠1 : S × S → P(S) returns all
(possibly discontinuous) pieces of 𝑠2 that don’t overlap with
𝑠1.

We lift the merge operation to step functions mergeP :
P → P by merging all overlapping segments:

mergeP (sf ) = {mergeS (𝑠1, 𝑠2) | ∀𝑠1, 𝑠2 ∈ sf ∧ overlap(𝑠1, 𝑠2)}
∪ {𝑠 ∈ sf | ∀𝑠2 ∈ sf , 𝑠 ≠ 𝑠2 ∧ ¬overlap(𝑠, 𝑠2)}.

The overlap predicate is true if the intervals of 𝑠1 and 𝑠2
overlap.

3If we were concerned with other rounding modes we could bound the
error with ulp(𝑛) instead.



A Step-Function Abstract Domain for Granular Floating-Point Error Analysis NSAD ’24, October 22, 2024, Pasadena, CA, USA

𝑥−

𝑥+

𝑥𝑒

𝑦−

𝑦+

𝑦𝑒

𝑧−

𝑧+

𝑧𝑒1

𝑧𝑒2

Figure 6. A merge operation on segments 𝑥 and 𝑦.

With the arithmetic operators of step functions and the
abstraction function defined the abstract semantics are in
place for arithmetic expressions.

4.2.2 Boolean Expressions. The abstract semantics of
boolean expressions filter the abstract values of a single
abstract memory. The values in the abstract memory are
restricted to satisfy the conditions. For true we return the in-
put memory and for false we return the empty memory ⊥M♯

which maps every variable to the empty set. For negation,
we take the complement of the intervals.

Comparing abstract values involves a filter function F𝐵 :
P → P which removes any segments that cannot satisfy the
comparison 𝐵. As an example, for 𝑋 ≤ 𝑌 , 𝑋 is limited to the
set of segments that are less than 𝑌 ’s upper bound, written
𝑌+, and any segments that cross 𝑌 ’s upper bound are now
bounded by 𝑌+:

F(𝑋 ≤𝑌 ) (𝑋 ) = {𝑠 | 𝑠 ∈ 𝑋 ∧ 𝑠+ ≤ 𝑌+} ∪
{([𝑠− ;𝑌+], 𝑒𝑠 ) | ( [𝑠− ; 𝑠+], 𝑒𝑠 ) ∈ 𝑋 ∧ 𝑠− ≤ 𝑌+ < 𝑠+}.

For negation, we negate the condition we are filtering on.
Comparing step functions to constants is similar.

4.2.3 Statements. The abstract semantics of statements
modifies the abstract memory. Assignment involves updating
the memory to point to the result of the right-hand side
expression. Composition is defined similar to the concrete
semantics.

The abstract semantics of if-statements account for stable
and unstable paths. The first two terms of the semantics
of if-statements in Figure 4c compute the error for stable
paths by filtering the memory and then exploring either
branch. Unstable cases are handled by the last two terms by
filtering for potential instabilities determining the error for
each variable if either branch was executed.
To detect potential instability, we define theU𝐵 : M♯ →

M♯ function. The function restricts each segment to only the
overlapping portions of their interval:

U(𝑋<𝑌 )𝑚
♯ =𝑚♯ [𝑥 ↦→ (𝑥𝑖 ∩ [𝑌 − ;𝑌+], 𝑒𝑥 ) | ∀(𝑥𝑖 , 𝑒𝑥 ) ∈ 𝑋 ] .

After filtering, we explore both branches and compute the
error of each variable by taking the maximum difference in
value between the branches:

diff ( [𝑥− ;𝑥+], [𝑦− ;𝑦+]) =max( |𝑥+ − 𝑦− |, |𝑦+ − 𝑥− |).

We combine the stable and unstable cases by taking the
union over abstract memory. The union of abstract memory
is the union of all their values:

𝑚
♯

1 ∪M♯ 𝑚
♯

2 = [𝑥 ↦→𝑚
♯

1𝑥 ∪V♯ 𝑚
♯

2𝑥 | ∀𝑥] .

For the union of abstract values we define the union of two
step functions as the union of all their segments merged
and the union of (integer) intervals in the standard way for
intervals:

𝑋 ∪P 𝑌 =mergeP (𝑋 ∪ 𝑌 ),
[𝑎− ;𝑎+] ∪I [𝑏− ;𝑏+] = [min(𝑎−, 𝑏−); max(𝑎+;𝑏+)] .

5 Binade Splitting
We can improve our analysis by splitting an operation’s
result along binade boundaries into segments. As each binade
has a different maximum rounding error, smaller binades
can be given a more precise error bound.

To accomplish this, we update the arithmetic operators on
segments. The idea is to calculate the output interval, then
split the interval along all binade boundaries. The resulting
subintervals can then be mapped to output segments using
error functions slightly modified from the operators defined
in Figure 5. First we define the spl : I → P(I) as

spl( [𝑎− ;𝑎+]) =
{[2𝑛 ; 2𝑛+1 − ulp(2𝑛+1)] | 𝑛 ∈ N ∧ 𝑎− < 2𝑛 ∧ 𝑎+> 2𝑛 + 1}

∪ {[𝑎− ; 2𝑛 − ulp(2𝑛)] | 𝑛 = fexp(𝑎−)}
∪ {[2𝑛 ;𝑎+] | 𝑛 = fexp(𝑎+)}.

Here, fexp(𝑓 ) : F → Z gives the exponent of the FP value
𝑓 and 𝑛 ∈ Z. The first term finds all subintervals that span
an entire binade. The second and third terms are intervals
formed from the lower and upper bounds of input interval
and their nearest binade boundary.

To propagate error to these split intervals we slightly mod-
ify the error operators in Figure 5. The propagation compo-
nent is unchanged but the rounding error is improved by
taking the upper bound of the output interval, 𝑖𝑜 :

err+ (𝑖1, 𝑒1, 𝑖2, 𝑒2, 𝑖𝑜 ) = 𝑒1 + 𝑒2 +
1
2
ulp(↑𝑖𝑜 )

err− (𝑖1, 𝑒1, 𝑖2, 𝑒2, 𝑖𝑜 ) = |𝑒1 + 𝑒2 | +
1
2
ulp(↑𝑖𝑜 )

err∗ (𝑖1, 𝑒2, 𝑖2, 𝑒2, 𝑖𝑜 ) = ↑𝑖1𝑒2 + ↑𝑖2𝑒1 + 𝑒1𝑒2 +
1
2
ulp(↑𝑖𝑜 )

err/ (𝑖1, 𝑒2, 𝑖2, 𝑒1, 𝑖𝑜 ) =
(↑𝑖1)𝑒2 + (↓𝑖2)𝑒1
(↓𝑖2)2 − (↓𝑖2)𝑒2

+ 1
2
ulp(↑𝑖𝑜 ).
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x = {[0; 1.57079632679489656] , 0.0}

(a) The specification file - sine.spec
double sine_taylor(double x) {

return x - (x*x*x) / 6.0 +
(x*x*x*x*x) / 120.0 -
(x*x*x*x*x*x*x) / 5040.0; }

(b) The code file - sine.c
var ,type ,low ,high ,err
retval ,flt ,1.7192e-2 ,2.6568e-2 ,4.8992e-16
...
retval ,flt ,1.0619e+0 ,1.1465e+0 ,1.1421e-15

(c) The output file - sine.csv.
Numbers have been truncated to four significant digits

Figure 7. The input and output files when analyzing sin(𝑥)

We update the arithmetic operators on segments to take into
account this splitting:
(𝑖1, 𝑒1) ⊙ (𝑖2, 𝑒2) = {(𝑖, 𝑒𝑟𝑟⊙ (𝑖1, 𝑒1, 𝑖2, 𝑒2, 𝑖)) | 𝑖 ∈ spl(𝑖1 ⊙ 𝑖2)}.
We use these updated segment arithmetic operators in

Equation (3) to provide an improved bound on the error.

6 Implementation
We implement our step function abstract domain in OCaml.
Our analyzer accepts a C source file, the name of a function
to analyze, and a specification file containing preconditions
for function input. Our analyzer then determines the range
of values and the error for each variable declared in the
specification file. Figure 7 shows the input and output files
from an analysis of the sine approximation from Figure 1.

Specification files arewritten by the user to provide bounds
on the function parameters’ value and error. These files con-
tain variable names and associated segments. Segments are
written as ([lb ; ub], err)with lb and ub being the vari-
able’s lower and upper bound and err being the error’s up-
per bound. Multiple segments can be included for a single
variable. We show an example specification file in Figure 7a
where the input ranges from 0 to 𝜋/2 with no error.

Our tool ingests C code using the CIL intermediate rep-
resentation (IR) of C in OCaml, which is updated and main-
tained by the Goblint static analysis project [23]. We then
transform the IR to the internal representation described in
Section 4. We chose CIL as it is a mature project that has
been used in other static verification tools such as Frama-C
and Goblint. A program’s FP variables are then abstracted
to using the functions described in Equations (1) and (2). To
use FP rounding modes in OCaml we defined C functions
that allow for the specification of the rounding mode and
linked them using OCaml’s foreign function interface.

Figure 7c shows the output file of an analysis. The output
is a CSV where each row is a segment containing the lower
bound (low), upper bound (high), and error (err). The var
column specifies which variable in memory the segment
belongs to. The type column specifies if the variable is a FP
value or an integer.

7 Evaluation
We have tested our analysis on a selection of benchmarks
from FPBench [7]. Themost direct comparison is Fluctuat [16],
because both analyze C code directly using abstract interpre-
tation, but these benchmarks are often compared in other
tools in the field [8, 9, 24].
Because of the detailed nature of our analysis, it is dif-

ficult to directly compare with other tools. In general, our
analyzer’s overall upper bound on the error is worse, how-
ever the analysis shows an improvement on error bound for
certain output values. Moreover, several other analyzers do
not support conditionals or arrays.
Figure 8 shows analysis for five different FPBench func-

tions (cav10 is plotted twice for reasons we will explain).
In all benchmarks, the y-axes show absolute error as the
difference between 64-bit double-precision FP and 200-bit
MPFR float results [14].
The x-axes show the output of the functions. The bench-

marks rigidBody1 and doppler1 are ternary and the rest are
unary. The blue density map shows the observed error of
the output. We randomly sample 1 million inputs, but do not
attempt to select inputs that maximize observed error.
The green lines show the segments of our analyzer and

and the orange lines shows the error produced by Fluctuat.
Generally, Fluctuat provides tighter bounds in the general
case but our analysis shows tighter bounds for certain out-
puts, which can help guide further analysis and verification.

We point out in the rigidBody benchmark, there is a single
triple of inputs which has a larger observed error than the
Fluctuat bound. This is not a plotting artifact; we invesigated
this but were not able to determine why Fluctuat returns an
unsound bound in this case.

We plot the cav10 benchmark twice to show Fluctuat’s two
modes: one which supports branch instability, but has similar
imprecision as ours (absolute error of about 100), and another,
more precise but unsound with respect to branch instability.
Our analysis correctly predicts areas of unbounded error
(not plotted, but returned as +∞ in our tool).

Table 1 shows our runtime results on the benchmarks plot-
ted in Figure 8 using a Macbook M1. Fluctuat scales better
for analysis of larger programs. We discuss potential opti-
mizations for our approach in § 9. A more in-depth survey of
tools and timing results is provided by Solovyev et al. [24].
The lack of precision for larger values is expected. The

step function abstract domain uses intervals to calculate the
range of values for a variable , which are less precise than
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Figure 8. Results of several benchmarks from FPBench compared with Fluctuat and 1 million randomly-sampled inputs.

Table 1. Timing results for Fluctuat versus our tool.

Benchmark Fluctuat Step Functions
rigidBody1 .01s .43s
sqroot .01s .33s
doppler1 .02s .03s
sin .02s .09s
cav10 .02s .23s

Fluctuat’s model of zonotopes and so produces larger error
bounds. However, this approach demonstrates the practical-
ity of the step function domain andwemention opportunities
for improving the precision of our analysis in § 9.

8 Related Work
Several tools for static FP error analysis have been devel-
oped. PRECiSA [25], Astrée [6], and Fluctuat [16] are based
on abstract interpretation. These tools provide a single bound
for error analysis but use sophisticated abstract domains to
tighten their overapproximations. Both Fluctuat and Astrée
provide better approximations compared to interval arith-
metic, but still rely on linear relationships between variables
which can perform poorly on non-linear operators [20, 21].
Other abstract domains have been formulated which can
better handle loops and more complex arithmetic [4, 12], but
since Astrée and Fluctuat are closed source it is difficult to
examine which are used in practice.

Other automated-reasoning tools for FP error analysis in-
clude Daisy [8], FPTaylor [24], and Gappa [11], which each
support different programming language constructs. FPTay-
lor and Gappa require straight-line code, PRECiSA and Daisy
support conditionals. Each require expressing programs in
domain-specific languages, though some have been used in
pipelines full-program analysis. Since we analyze C code
directly, our most direct comparison is Fluctuat.

Proof assistants allow users to build constructive, machine-
checkable proofs of bounds on their FP error using functional
models of their code. These formalizations have been devel-
oped in Coq [2] and PVS [3]. Defining and proving these
functional models is a manual process that can prove difficult
and requires skilled analysts, though VCFloat2 and PVS do
provide some automation capabilities [1].

Recent work extending PRECiSA, called ReFlow, uses ab-
stract interpretation, code generation, proof assistants, and
annotation languages to build correct-by-construction imple-
mentations of FP programs in C [13]. This approach gener-
ates verification conditions in Frama-C [18] which are then
dispatched to automated or interactive provers.
In contrast, the goal of our tool is to provide a fully-

automated, detailed understanding of FP errors which then
could facilitate more formal proofs using Coq or PVS if the
effort is deemed necessary.

9 Future Work and Conclusion
There are some clear directions to continue developing our
step function abstract domain: our underlying value approx-
imation, interval arithmetic, is known to be imprecise and
function calls and loops are absent from our analysis.
More sophisticated abstract domains, such as zonotopic

(used in Fluctuat [16]) and octagon (used in Astreé [6]) would
improve error analysis but require splitting the error function
over a more complex value space.
Adding support for function calls would allow analysis

of many more programs. Function calls introduce new chal-
lenges as they complicate the control flow of the program.
Multiple techniques for supporting functions have been de-
veloped and provide possible extensions to our tool [17, 22].
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As noted in § 7, our technique as implemented may not
scale well to larger programs. This could be improved by
bounding the total number of segments the analyzer creates;
this would limit the complexity per floating-point operation
but may reduce precision.

Handling unbounded loops is tricky for any static analysis.
In abstract interpretation, the typical approach is to find
a fixpoint of iterations of the loop body. One approach is
using a widening operator, but in practice, the results are
often too coarse to be useful, so analysts instead bound loop
iterations. Extending our analysis with bounded loops is
straightforward, while defining a precise widening operator
remains a more difficult goal.
In this paper, we presented a new step function abstract

domain for analyzing floating-point error. The domain pro-
vides a more granular error analysis for floating-point code
by mimicking the behavior of floating-point error. We im-
plemented the domain and performed comparisons with
Fluctuat. Evaluations show that the granular analysis can
improve error bounds for subsets of variable outputs.
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